High melting lipid based approach for drug delivery: solid lipid nanoparticles.

Poor solubility of newly developed drug molecules is the main problem in recent drug discovery research, so novel drug delivery approaches are being used to deliver these molecular entities for pharmacological action. Colloidal carriers (emulsion, suspensions, liposomes, polymer nanoparticles and solid lipid nanoparticles) have been used to administer poorly soluble drugs, but solid lipid nanoparticles are found to be the most reliable carriers for this type of drugs due to its advantages over other carriers. Solid lipid nanoparticles have the potential to solve the drug delivery problems with safe excipients used in its formulation. In this review all the aspects of solid lipid nanoparticles production, stability, characterization, differentiation based on route, preservation and storage have been discussed.

[1]  Douglas G. Dalgleish,et al.  Dynamic Light Scattering Techniques and Their Applications in Food Science , 2006 .

[2]  A. Pardakhty,et al.  Caffeine-Loaded Niosomes: Characterization and in Vitro Release Studies , 2007, Drug delivery.

[3]  R. Mumper,et al.  Preparation and characterization of novel coenzyme Q10 nanoparticles engineered from microemulsion precursors , 2008, AAPS PharmSciTech.

[4]  R. Cavalli,et al.  Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. , 2002, International journal of pharmaceutics.

[5]  T. Essam,et al.  Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin , 2011, Drug development and industrial pharmacy.

[6]  Chong-K. Kim,et al.  Development of a binary lipid nanoparticles formulation of itraconazole for parenteral administration and controlled release. , 2010, International journal of pharmaceutics.

[7]  Shobhona Sharma,et al.  Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether: Nanoject. , 2008, International journal of pharmaceutics.

[8]  H. Dai,et al.  Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. , 2008, Journal of the American Chemical Society.

[9]  Jie Shen,et al.  Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement , 2010, Nanotechnology.

[10]  V. Venkateswarlu,et al.  Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[11]  M. Prato,et al.  Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. , 2005, Angewandte Chemie.

[12]  M. Bally,et al.  A Parenteral Econazole Formulation Using a Novel Micelle-to-Liposome Transfer Method: In Vitro Characterization and Tumor Growth Delay in a Breast Cancer Xenograft Model , 2006, Pharmaceutical Research.

[13]  Robert J. Lee,et al.  Preparation, therapeutic efficacy and intratumoral localization of targeted daunorubicin liposomes conjugating folate-PEG-CHEMS. , 2011, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[14]  D. Aggarwal,et al.  Development of a topical niosomal preparation of acetazolamide: preparation and evaluation , 2004, The Journal of pharmacy and pharmacology.

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Yuhan Lee,et al.  Cationic solid lipid nanoparticles reconstituted from low density lipoprotein components for delivery of siRNA. , 2008, Molecular pharmaceutics.

[17]  P. Maincent,et al.  Formulation of Insulin-Loaded Polymeric Nanoparticles Using Response Surface Methodology , 2005, Drug development and industrial pharmacy.

[18]  R. Müller,et al.  The role of plasma proteins in brain targeting: species dependent protein adsorption patterns on brain-specific lipid drug conjugate (LDC) nanoparticles. , 2001, International journal of pharmaceutics.

[19]  Sébastien Lecommandoux,et al.  Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. , 2011, ACS Nano.

[20]  J. Welsh,et al.  Self‐Assembled Poly(butadiene)‐b‐poly(ethylene oxide) Polymersomes as Paclitaxel Carriers , 2007, Biotechnology progress.

[21]  M. Yudasaka,et al.  Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. , 2004, Molecular pharmaceutics.

[22]  Stephen Mann,et al.  Synthesis of Aragonite Nanofilament Networks by Mesoscale Self‐Assembly and Transformation in Reverse Microemulsions , 2003 .

[23]  A F Thünemann,et al.  Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals. , 2006, International journal of pharmaceutics.

[24]  Mandip Singh,et al.  Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[25]  John Wang,et al.  Nanosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant , 1999 .

[26]  H. Fessi,et al.  Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins. , 2003, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[27]  R. Oréfice,et al.  Formation of ion pairing as an alternative to improve encapsulation and stability and to reduce skin irritation of retinoic acid loaded in solid lipid nanoparticles. , 2009, International journal of pharmaceutics.

[28]  H. Kristensen,et al.  Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. , 2006, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[29]  A. Pardakhty,et al.  In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. , 2007, International journal of pharmaceutics.

[30]  R. Müller,et al.  Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[31]  T. Tsai,et al.  Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[32]  Monty Liong,et al.  Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. , 2008, ACS nano.

[33]  A. Radomska-Soukharev Stability of lipid excipients in solid lipid nanoparticles. , 2007, Advanced drug delivery reviews.

[34]  D. Bi,et al.  [Preparation of solid lipid nanoparticles by microemulsion technique]. , 2003, Yao xue xue bao = Acta pharmaceutica Sinica.

[35]  F. Ahmad,et al.  Development and evaluation of nanosized niosomal dispersion for oral delivery of Ganciclovir , 2012, Drug development and industrial pharmacy.

[36]  K. Morimoto,et al.  Uptake of dexamethasone incorporated into liposomes by macrophages and foam cells and its inhibitory effect on cellular cholesterol ester accumulation , 2006, The Journal of pharmacy and pharmacology.

[37]  Andrew G. Glen,et al.  APPL , 2001 .

[38]  Chong-K. Kim,et al.  Stabilization of all-trans retinol by loading lipophilic antioxidants in solid lipid nanoparticles. , 2006, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[39]  S. Zeng,et al.  Studies on oral absorption of stearic acid SLN by a novel fluorometric method. , 2007, Colloids and surfaces. B, Biointerfaces.

[40]  Sarah Heilmann,et al.  3D-wound healing model: influence of morphine and solid lipid nanoparticles. , 2010, Journal of biotechnology.

[41]  V. Torchilin,et al.  Diacyllipid-Polymer Micelles as Nanocarriers for Poorly Soluble Anticancer Drugs , 2002 .

[42]  R. Cavalli,et al.  Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. , 2000, Pharmacological research.

[43]  Maurizio Prato,et al.  Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. , 2008, Chemical communications.

[44]  Sacheen Kumar,et al.  Preparation and characterization of Paliperidone loaded solid lipid nanoparticles. , 2013, Colloids and surfaces. B, Biointerfaces.

[45]  J. Manosroi,et al.  Anti-inflammatory activity of gel containing novel elastic niosomes entrapped with diclofenac diethylammonium. , 2008, International journal of pharmaceutics.

[46]  N. Taulier,et al.  Screening of Lipid Carriers and Characterization of Drug-Polymer-Lipid Interactions for the Rational Design of Polymer-Lipid Hybrid Nanoparticles (PLN) , 2006, Pharmaceutical Research.

[47]  K. Sawant,et al.  Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. , 2011, Acta biomaterialia.

[48]  M. Sznitowska,et al.  Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. , 2001, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[49]  S. Patankar,et al.  Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. , 2010, Colloids and surfaces. B, Biointerfaces.

[50]  X. Wu,et al.  Development of solid lipid nanoparticles containing ionically complexed chemotherapeutic drugs and chemosensitizers. , 2004, Journal of pharmaceutical sciences.

[51]  Stephan Marsch,et al.  Inhibition of Macrophage Phagocytotic Activity by a Receptor-targeted Polymer Vesicle-based Drug Delivery Formulation of Pravastatin , 2008, Journal of cardiovascular pharmacology.

[52]  N. Zhang,et al.  Mannan-Modified Solid Lipid Nanoparticles for Targeted Gene Delivery to Alveolar Macrophages , 2010, Pharmaceutical Research.

[53]  Schwarz,et al.  Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). , 1997, International journal of pharmaceutics.

[54]  D. Chirio,et al.  Preparation of solid lipid nanoparticles from W/O/W emulsions: Preliminary studies on insulin encapsulation , 2009, Journal of microencapsulation.

[55]  R. Cavalli,et al.  Solid lipospheres of doxorubicin and idarubicin , 1993 .

[56]  B. Vincent,et al.  Adsorption of non-ionic surfactants on hydrophobic silica particles and the stability of the corresponding aqueous dispersions. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[57]  B. Tromberg,et al.  Fluorescence imaging studies for the disposition of daunorubicin liposomes (DaunoXome) within tumor tissue. , 1996, Cancer research.

[58]  M. Schäfer-Korting,et al.  Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[59]  A. Attama,et al.  Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. , 2008, International journal of pharmaceutics.

[60]  Uday B Kompella,et al.  Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. , 2003, Investigative ophthalmology & visual science.

[61]  Lisa Brannon-Peppas,et al.  Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. , 2007, Nanomedicine.

[62]  Jia-You Fang,et al.  Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations. , 2011, Journal of pharmaceutical sciences.

[63]  S. Akhtar Non-viral cancer gene therapy: Beyond delivery , 2006, Gene Therapy.

[64]  C. Demetzos,et al.  Scanning electron microscopy study on nanoemulsions and solid lipid nanoparticles containing high amounts of ceramides. , 2007, Micron.

[65]  J. Jang,et al.  Novel crystalline supramolecular assemblies of amorphous polypyrrole nanoparticles through surfactant templating. , 2002, Chemical communications.

[66]  R. Müller,et al.  Peptide-loaded solid lipid nanoparticles (SLN): Influence of production parameters , 1997 .

[67]  W Mehnert,et al.  Solid lipid nanoparticles (SLN) for controlled drug delivery--drug release and release mechanism. , 1998, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[68]  M. Schäfer-Korting,et al.  Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[69]  H. Kataura,et al.  Highly Stabilized β‐Carotene in Carbon Nanotubes , 2006 .

[70]  J. Waldrep,et al.  High dose cyclosporin A and budesonide-liposome aerosols , 1997 .

[71]  M. Morgen,et al.  Polymeric Nanoparticles for Increased Oral Bioavailability and Rapid Absorption Using Celecoxib as a Model of a Low-Solubility, High-Permeability Drug , 2011, Pharmaceutical Research.

[72]  Giorgia Pastorin,et al.  Incorporation of Hexamethylmelamine inside Capped Carbon Nanotubes , 2008 .

[73]  S. Ardizzone,et al.  XPS study of the surfactant film adsorbed onto growing titania nanoparticles , 2006 .

[74]  M. S. Muthu,et al.  PLGA nanoparticle formulations of risperidone: preparation and neuropharmacological evaluation. , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[75]  C. Sinico,et al.  Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: in vitro evaluation. , 2012, International journal of pharmaceutics.

[76]  E. Marengo,et al.  Scale-up of the preparation process of solid lipid nanospheres. Part I. , 2000, International journal of pharmaceutics.

[77]  Hyun-chul Lee,et al.  Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(gamma-benzyl L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. , 2005, International journal of pharmaceutics.

[78]  Rainer H Müller,et al.  The influence of solid lipid nanoparticles on skin hydration and viscoelasticity--in vivo study. , 2003, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[79]  Jia-You Fang,et al.  Development and evaluation of lipid nanoparticles for camptothecin delivery: a comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion , 2008, Acta Pharmacologica Sinica.

[80]  J. Richie,et al.  Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[81]  S. Santoyo,et al.  Topical application of acyclovir-loaded microparticles: quantification of the drug in porcine skin layers. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[82]  S. Shanmugam,et al.  Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. , 2009, International journal of pharmaceutics.

[83]  Thomas Hirt,et al.  Polymerized ABA Triblock Copolymer Vesicles , 2000 .

[84]  S. Wissing,et al.  Investigations on the occlusive properties of solid lipid nanoparticles (SLN). , 2001, Journal of cosmetic science.

[85]  Y. Kuo,et al.  Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. , 2011, Colloids and surfaces. B, Biointerfaces.

[86]  H. Fessi,et al.  Preparation of solid lipid nanoparticles using a membrane contactor. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[87]  J. Pedraz,et al.  Solid lipid nanoparticles: formulation factors affecting cell transfection capacity. , 2007, International journal of pharmaceutics.

[88]  Raida Al-Kassas,et al.  Niosomes and discomes for ocular delivery of naltrexone hydrochloride: morphological, rheological, spreading properties and photo-protective effects. , 2012, International journal of pharmaceutics.

[89]  C. Porter,et al.  Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs , 2007, Nature Reviews Drug Discovery.

[90]  Aleksandar D. Marinković,et al.  The response of peritoneal macrophages to dapsone covalently attached on the surface of carbon nanotubes , 2010 .

[91]  P. Diwan,et al.  β-Hydroxybutyric acid grafted solid lipid nanoparticles: a novel strategy to improve drug delivery to brain. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[92]  A. Nokhodchi,et al.  Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. , 2011, Colloids and surfaces. B, Biointerfaces.

[93]  W. L. Jolly,et al.  X-RAY PHOTOELECTRON SPECTROSCOPY , 1970 .

[94]  Kumar A. Shah,et al.  Biocompatible microemulsions for fabrication of glyceryl monostearate solid lipid nanoparticles (SLN) of tretinoin. , 2009, Journal of biomedical nanotechnology.

[95]  Monty Liong,et al.  Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. , 2007, Small.

[96]  R. Müller,et al.  Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. , 1999, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[97]  Robert H. Hurt,et al.  Mechanisms of surfactant adsorption on non-polar, air-oxidized and ozone-treated carbon surfaces , 2003 .

[98]  R. Müller,et al.  Influence of different parameters on reconstitution of lyophilized SLN. , 2000, International journal of pharmaceutics.

[99]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[100]  F. Toma,et al.  Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. , 2010, Chemical communications.

[101]  Carl P. Tripp,et al.  Synthesis of high surface area monoclinic WO3 particles using organic ligands and emulsion based methods , 2002 .

[102]  A. Göpferich,et al.  Development and characterization of lipid microparticles as a drug carrier for somatostatin. , 2001, International journal of pharmaceutics.

[103]  L. Rizza,et al.  Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry. , 2005, International journal of pharmaceutics.

[104]  Hong Yuan,et al.  Preparation and characterization of solid lipid nanoparticles containing peptide. , 2004, International journal of pharmaceutics.

[105]  V. Bhardwaj,et al.  Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[106]  M. Khan,et al.  Product and process understanding of a novel pediatric anti-HIV tenofovir niosomes with a high-pressure homogenizer. , 2011, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[107]  Y. Pei,et al.  Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[108]  D. Crommelin,et al.  Stability of doxorubicin-liposomes on storage: as an aqueous dispersion, frozen or freeze-dried , 1984 .

[109]  Chong-Kook Kim,et al.  Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. , 2007, Biomaterials.

[110]  R. Müller,et al.  Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[111]  P. Diwan,et al.  Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[112]  B. Sarmento,et al.  Oral insulin delivery by means of solid lipid nanoparticles , 2007, International journal of nanomedicine.

[113]  M. Trotta,et al.  Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles , 1997 .

[114]  D. Mcclements,et al.  Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). , 2009, Journal of colloid and interface science.

[115]  R. Müller,et al.  Spray-drying of solid lipid nanoparticles (SLN TM). , 1998, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[116]  S. Itai,et al.  Physical properties of griseofulvin-lipid nanoparticles in suspension and their novel interaction mechanism with saccharide during freeze-drying. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[117]  V. S. Lin,et al.  Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. , 2009, Journal of the American Chemical Society.

[118]  M. Trotta,et al.  Electrospray technique for solid lipid-based particle production , 2009, Drug development and industrial pharmacy.

[119]  E. Souto,et al.  Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery , 2011, Nanotechnology.

[120]  R. Hurt,et al.  Tocopheryl Polyethylene Glycol Succinate as a Safe, Antioxidant Surfactant for Processing Carbon Nanotubes and Fullerenes. , 2007, Carbon.

[121]  R. Müller,et al.  Formulation and in vitro-in vivo evaluation of piribedil solid lipid micro- and nanoparticles , 2001, Journal of microencapsulation.

[122]  N. Yuksel,et al.  Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. , 2010, Journal of pharmaceutical sciences.

[123]  R. Müller,et al.  Transfection with different colloidal systems: comparison of solid lipid nanoparticles and liposomes. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[124]  R. Müller,et al.  Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticle-mediated gene transfer. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[125]  M. Conese,et al.  Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[126]  Huibi Xu,et al.  Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[127]  The Encapsulation of Bleomycin Within Chitosan Based Polymeric Vesicles Does Not Alter its Biodistribution , 2000, The Journal of pharmacy and pharmacology.

[128]  K. Stebelska,et al.  Liposomal formulation of 5-fluorocytosine in suicide gene therapy with cytosine deaminase--for colorectal cancer. , 2008, Cancer letters.

[129]  M. Trotta,et al.  Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. , 2003, International journal of pharmaceutics.

[130]  Zhuang Liu,et al.  Drug delivery with carbon nanotubes for in vivo cancer treatment. , 2008, Cancer research.

[131]  S. Sapino,et al.  Resveratrol in Solid Lipid Nanoparticles , 2012 .

[132]  Y. Cai,et al.  Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[133]  M C Davies,et al.  Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[134]  N. Phillips,et al.  Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. , 1998, Journal of microencapsulation.

[135]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[136]  O. Sammour,et al.  Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. , 2008, International journal of pharmaceutics.

[137]  Qing-Bo Wei,et al.  Preparation and Theophylline Delivery Applications of Novel PMAA/MWCNT-COOH Nanohybrid Hydrogels , 2009, Journal of biomaterials science. Polymer edition.

[138]  R. Muzzalupo,et al.  Niosomes vs microemulsions: new carriers for topical delivery of Capsaicin. , 2011, Colloids and surfaces. B, Biointerfaces.

[139]  M. Schubert,et al.  Solvent injection as a new approach for manufacturing lipid nanoparticles--evaluation of the method and process parameters. , 2003, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[140]  R. Müller,et al.  Lipid-drug conjugate nanoparticles of the hydrophilic drug diminazene-cytotoxicity testing and mouse serum adsorption. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[141]  M. Schäfer-Korting,et al.  Solid lipid nanoparticles as drug carriers for topical glucocorticoids. , 2000, International journal of pharmaceutics.

[142]  M. Schäfer-Korting,et al.  Liposome encapsulation improves efficacy of betamethasone dipropionate in atopic eczema but not in psoriasis vulgaris , 2004, European Journal of Clinical Pharmacology.

[143]  J. Graybill,et al.  Amphotericin B in liposomes: a novel therapy for histoplasmosis. , 1982, The American review of respiratory disease.

[144]  H. Schreier,et al.  Effect of Dose and Release Rate on Pulmonary Targeting of Liposomal Triamcinolone Acetonide Phosphate , 1998, Pharmaceutical Research.

[145]  R. Pandey,et al.  Oral solid lipid nanoparticle-based antitubercular chemotherapy. , 2005, Tuberculosis.

[146]  Jian Xu,et al.  XPS investigation of water-soluble copolymer surfactants on interface , 1999 .

[147]  M. F. San Martín-González,et al.  Characterization of ergocalciferol loaded solid lipid nanoparticles. , 2012, Journal of food science.

[148]  R. Murthy,et al.  Arthemeter-loaded lipid nanoparticles produced by modified thin-film hydration: Pharmacokinetics, toxicological and in vivo anti-malarial activity. , 2010, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[149]  B. Ruozi,et al.  Preparation and optimization of PIT solid lipid nanoparticles via statistical factorial design. , 2012, European journal of medicinal chemistry.

[150]  V. Luzzati,et al.  Polymorphism of Lipids , 1967, Nature.

[151]  S. Gohla,et al.  Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization , 2002, Journal of microencapsulation.

[152]  Thomas Rades,et al.  Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. , 2006, International journal of pharmaceutics.

[153]  F. Severcan,et al.  Effect of progesterone on DPPC membrane: evidence for lateral phase separation and inverse action in lipid dynamics. , 2005, Archives of biochemistry and biophysics.

[154]  R. Müller,et al.  Solid lipid nanoparticles (SLN/Lipopearls)--a pharmaceutical and cosmetic carrier for the application of vitamin E in dermal products. , 1999, Journal of microencapsulation.

[155]  A. Dokoumetzidis,et al.  Analysis of Dissolution Data Using Modified Versions of Noyes–Whitney Equation and the Weibull Function , 2006, Pharmaceutical Research.