Electrochemical capacitors: mechanism, materials, systems, characterization and applications.

Electrochemical capacitors (i.e. supercapacitors) include electrochemical double-layer capacitors that depend on the charge storage of ion adsorption and pseudo-capacitors that are based on charge storage involving fast surface redox reactions. The energy storage capacities of supercapacitors are several orders of magnitude higher than those of conventional dielectric capacitors, but are much lower than those of secondary batteries. They typically have high power density, long cyclic stability and high safety, and thus can be considered as an alternative or complement to rechargeable batteries in applications that require high power delivery or fast energy harvesting. This article reviews the latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications. In particular, the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour, which bridges the gap between battery behaviour and conventional pseudocapacitive behaviour, is also clarified for comparison. Finally, the prospects and challenges associated with supercapacitors in practical applications are also discussed.

[1]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[2]  X. Lou,et al.  A Flexible Quasi‐Solid‐State Asymmetric Electrochemical Capacitor Based on Hierarchical Porous V2O5 Nanosheets on Carbon Nanofibers , 2015 .

[3]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[4]  Jiayan Luo,et al.  An Ordered Mesoporous Carbon with Short Pore Length and Its Electrochemical Performances in Supercapacitor Applications , 2007 .

[5]  S. Trasatti Physical electrochemistry of ceramic oxides , 2010 .

[6]  F. Béguin,et al.  A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution , 2010 .

[7]  X. Lou,et al.  Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties , 2016 .

[8]  J. Tarascon,et al.  V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. , 2011, Journal of the American Chemical Society.

[9]  J. Yang,et al.  Nickel foam-supported porous Ni(OH)2/NiOOH composite film as advanced pseudocapacitor material , 2011 .

[10]  Pierre-Louis Taberna,et al.  In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. , 2015, Nature materials.

[11]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[12]  P. Bruce,et al.  TiO2–B nanowires as negative electrodes for rechargeable lithium batteries , 2005 .

[13]  X. Lou,et al.  General Formation of M(x)Co(3-x)S4 (M=Ni, Mn, Zn) Hollow Tubular Structures for Hybrid Supercapacitors. , 2015, Angewandte Chemie.

[14]  G. Gao,et al.  Facile synthesis of vanadium pentoxide@carbon core–shell nanowires for high-performance supercapacitors , 2015 .

[15]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[16]  Yongyao Xia,et al.  A nitrogen-doped ordered mesoporous carbon nanofiber array for supercapacitors , 2013 .

[17]  Gengchao Wang,et al.  Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)–H2SO4 porous gel electrolytes , 2014 .

[18]  Daniel Guay,et al.  Carbon/PbO2 asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte , 2011 .

[19]  Yongyao Xia,et al.  Pseudo-capacitive profile vs. Li-intercalation in Nano-LiFePO4 , 2013 .

[20]  A. Balducci,et al.  High power, solvent-free electrochemical double layer capacitors based on pyrrolidinium dicyanamide ionic liquids , 2015 .

[21]  F. Béguin,et al.  The Large Electrochemical Capacitance of Microporous Doped Carbon Obtained by Using a Zeolite Template , 2007 .

[22]  Shanyi Guang,et al.  Facile fabrication of three-dimensional highly ordered structural polyaniline–graphene bulk hybrid materials for high performance supercapacitor electrodes , 2014 .

[23]  Alexander C. Forse,et al.  In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism , 2013, Journal of the American Chemical Society.

[24]  D. Zhao,et al.  An Interface‐Induced Co‐Assembly Approach Towards Ordered Mesoporous Carbon/Graphene Aerogel for High‐Performance Supercapacitors , 2015 .

[25]  H. Hng,et al.  Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors. , 2012, ACS applied materials & interfaces.

[26]  Haoshen Zhou,et al.  Mesoporous Carbon Nanofibers for Supercapacitor Application , 2009 .

[27]  Yufeng Zhao,et al.  Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode , 2015 .

[28]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[29]  Lijun Gao,et al.  Electrodeposited PbO2 thin film on Ti electrode for application in hybrid supercapacitor , 2009 .

[30]  M. Minakshi,et al.  Synthesis, crystal structure and pseudocapacitor electrode properties of γ-Bi2MoO6 nanoplates , 2014 .

[31]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[32]  Ho-Suk Choi,et al.  Effect of lithium difluoro (oxalato) borate on LiMn2O4-activated carbon hybrid capacitors , 2013, Electronic Materials Letters.

[33]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[34]  Jun Song Chen,et al.  Nitrogen-containing microporous carbon nanospheres with improved capacitive properties , 2011 .

[35]  Andreas Winter,et al.  Three‐Dimensional Nitrogen and Boron Co‐doped Graphene for High‐Performance All‐Solid‐State Supercapacitors , 2012, Advanced materials.

[36]  A. Burke R&D considerations for the performance and application of electrochemical capacitors , 2007 .

[37]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[38]  Xing Xie,et al.  High-performance nanostructured supercapacitors on a sponge. , 2011, Nano letters.

[39]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[40]  X. Lou,et al.  Body tissues and fluids , 1981 .

[41]  C. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society reviews.

[42]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[43]  X. Lou,et al.  Controlled Growth of NiMoO4 Nanosheet and Nanorod Arrays on Various Conductive Substrates as Advanced Electrodes for Asymmetric Supercapacitors , 2015 .

[44]  Yongyao Xia,et al.  Nanosized Li4Ti5O12 Prepared by Molten Salt Method as an Electrode Material for Hybrid Electrochemical Supercapacitors , 2006 .

[45]  P. He,et al.  Direct synthesis of mesoporous carbon nanowires in nanotubes using MnO(2) nanotubes as a template and their application in supercapacitors. , 2009, Chemical communications.

[46]  Shih‐Yuan Lu,et al.  A Cost‐Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide‐Driven Sol–Gel Process , 2010, Advanced materials.

[47]  H. Seo,et al.  Voltage characteristics and capacitance balancing for Li4Ti5O12/activated carbon hybrid capacitors , 2012 .

[48]  Jayan Thomas,et al.  Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions , 2015 .

[49]  Siew Hwa Chan,et al.  Graphene‐Based Materials for Energy Conversion , 2012, Advanced materials.

[50]  Baohua Li,et al.  A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant , 2015 .

[51]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[52]  H. Dai,et al.  Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. , 2010, Journal of the American Chemical Society.

[53]  J. Ko,et al.  Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. , 2011, Chemical communications.

[54]  Chunxiang Lu,et al.  Nitrogen- and oxygen-enriched 3D hierarchical porous carbon fibers: synthesis and superior supercapacity , 2015 .

[55]  D. Zhao,et al.  Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells , 2010 .

[56]  G. Gao,et al.  Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life , 2015 .

[57]  Kai-xi Li,et al.  Electrochemical performance of asymmetric supercapacitor based on Co3O4/AC materials , 2013 .

[58]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[59]  L. Kavan,et al.  Pseudocapacitive Lithium Storage in TiO2(B) , 2005 .

[60]  Zaiping Guo,et al.  Nitrogen-doped ordered mesoporous carbon with a high surface area, synthesized through organic-inorganic coassembly, and its application in supercapacitors. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[61]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[62]  Jim P. Zheng,et al.  A New Charge Storage Mechanism for Electrochemical Capacitors , 1995 .

[63]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[64]  Yan Liu,et al.  Improvement of the capacitive performances for Co-Al layered double hydroxide by adding hexacyanoferrate into the electrolyte. , 2009, Physical chemistry chemical physics : PCCP.

[65]  Zhuangjun Fan,et al.  From flour to honeycomb-like carbon foam: Carbon makes room for high energy density supercapacitors , 2015 .

[66]  Siwei Li,et al.  Micro Li-ion capacitor with activated carbon/graphite configuration for energy storage , 2015 .

[67]  Chi-Chang Hu,et al.  Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors , 2013 .

[68]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[69]  N. Munichandraiah,et al.  Symmetric supercapacitor based on partially exfoliated and reduced graphite oxide in neutral aqueous electrolyte , 2014 .

[70]  A. B. Fuertes,et al.  Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors. , 2015, ACS applied materials & interfaces.

[71]  Petr Novák,et al.  Mixed bi-material electrodes based on LiMn2O4 and activated carbon for hybrid electrochemical energy storage devices , 2011 .

[72]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[73]  Yongyao Xia,et al.  Ordered hierarchical mesoporous/microporous carbon with optimized pore structure for supercapacitors , 2013 .

[74]  Hao Jiang,et al.  Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors , 2011 .

[75]  D. Cazorla-Amorós,et al.  Enhanced capacitance of carbon nanotubes through chemical activation , 2002 .

[76]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[77]  Yongyao Xia,et al.  High Performance Hybrid Supercapacitor Based on Graphene-Supported Ni(OH)2-Nanowires and Ordered Mesoporous Carbon CMK-5 , 2013 .

[78]  J. Besenhard,et al.  Handbook of Battery Materials , 1998 .

[79]  Wenjun Meng,et al.  Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability , 2015 .

[80]  Jim P. Zheng,et al.  Ruthenium Oxide Film Electrodes Prepared at Low Temperatures for Electrochemical Capacitors , 2001 .

[81]  Zexiang Shen,et al.  High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film , 2014 .

[82]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.

[83]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[84]  Chi-Chang Hu,et al.  How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors , 2004 .

[85]  Chun Huang,et al.  One-step spray processing of high power all-solid-state supercapacitors , 2013, Scientific Reports.

[86]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[87]  Hao Jiang,et al.  Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. , 2011, Chemical communications.

[88]  Haoshen Zhou,et al.  Electrochemical capacitance of self-ordered mesoporous carbon , 2003 .

[89]  A. Benayad,et al.  Synthesis of Chemically Bonded Graphene/Carbon Nanotube Composites and their Application in Large Volumetric Capacitance Supercapacitors , 2013, Advanced materials.

[90]  Mykola Seredych,et al.  Combined Effect of Nitrogen‐ and Oxygen‐Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors , 2009 .

[91]  Yongyao Xia,et al.  Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors , 2009 .

[92]  Jeffrey W. Long,et al.  To Be or Not To Be Pseudocapacitive , 2015 .

[93]  Yongyao Xia,et al.  Electrochemical Capacitance Performance of Hybrid Supercapacitors Based on Ni ( OH ) 2 ∕ Carbon Nanotube Composites and Activated Carbon , 2006 .

[94]  Jim P. Zheng,et al.  Electrochemical Capacitors Using Hydrous Ruthenium Oxide and Hydrogen Inserted Ruthenium Oxide , 1998 .

[95]  Bin Wang,et al.  Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors , 2009 .

[96]  Arumugam Manthiram,et al.  Amorphous Tungsten Oxide/Ruthenium Oxide Composites for Electrochemical Capacitors , 2001 .

[97]  Hongyu Wang,et al.  Graphite, a suitable positive electrode material for high-energy electrochemical capacitors , 2006 .

[98]  Huanwen Wang,et al.  Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties , 2013 .

[99]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[100]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[101]  S. Bonnamy,et al.  Electrochemical storage of lithium in multiwalled carbon nanotubes , 1999 .

[102]  H. Nishihara,et al.  Porous Carbon Fibers Containing Pores with Sizes Controlled at the Ångstrom Level by the Cavity Size of Pillar[6]arene. , 2015, Angewandte Chemie.

[103]  S. G. Kandalkar,et al.  Preparation of cobalt oxide thin films and its use in supercapacitor application , 2008 .

[104]  J. Y. Park,et al.  Asymmetric supercapacitors based on the in situ-grown mesoporous nickel oxide and activated carbon , 2015, Journal of Solid State Electrochemistry.

[105]  W. Xi,et al.  Molecular Insights into Division of Single Human Cancer Cells in On-Chip Transparent Microtubes , 2016, ACS nano.

[106]  X. Lou,et al.  Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage , 2016 .

[107]  Hui Peng,et al.  Cotton-based porous activated carbon with a large specific surface area as an electrode material for high-performance supercapacitors , 2015 .

[108]  John R. Miller,et al.  Graphene Double-Layer Capacitor with ac Line-Filtering Performance , 2010, Science.

[109]  Jim P. Zheng,et al.  High energy and high power density electrochemical capacitors , 1996 .

[110]  Wei Sun,et al.  Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes , 2010 .

[111]  Qiao Chen,et al.  Effect of different gel electrolytes on graphene-based solid-state supercapacitors , 2014 .

[112]  L. Nyholm,et al.  Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. , 2015, Nanoscale.

[113]  Glenn Amatucci,et al.  Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes , 2003 .

[114]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[115]  Y. Meng,et al.  A Symmetric RuO2/RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte , 2012 .

[116]  W. Sugimoto,et al.  Charge Storage Capabilities of Rutile-Type RuO2 ­ VO 2 Solid Solution for Electrochemical Supercapacitors , 2002 .

[117]  Se Youn Cho,et al.  Microporous Carbon Nanoplates from Regenerated Silk Proteins for Supercapacitors , 2013, Advances in Materials.

[118]  Yufeng Zhao,et al.  Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. , 2015, ACS applied materials & interfaces.

[119]  D. Zhao,et al.  Multiwall carbon nanotube@mesoporous carbon with core-shell configuration: a well-designed composite-structure toward electrochemical capacitor application , 2011 .

[120]  Chi-Chang Hu,et al.  Advanced materials for aqueous supercapacitors in the asymmetric design , 2015 .

[121]  F. Wei,et al.  Raising the performance of a 4 V supercapacitor based on an EMIBF4-single walled carbon nanotube nanofluid electrolyte. , 2013, Chemical communications.

[122]  Jiayan Luo,et al.  Effect of Pore Structure on the Electrochemical Capacitive Performance of MnO2 , 2007 .

[123]  C. Barbero,et al.  Electrochemically Modified Glassy Carbon for Capacitor Electrodes Characterization of Thick Anodic Layers by Cyclic Voltammetry, Differential Electrochemical Mass Spectrometry, Spectroscopic Ellipsometry, X‐Ray Photoelectron Spectroscopy, FTIR, and AFM , 2000 .

[124]  Fan Zhang,et al.  A Self‐Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes , 2011 .

[125]  Hao Jiang,et al.  Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances , 2012 .

[126]  X. Lou,et al.  Hierarchical Tubular Structures Composed of Mn‐Based Mixed Metal Oxide Nanoflakes with Enhanced Electrochemical Properties , 2015 .

[127]  D. Zhao,et al.  Carbon Materials for Chemical Capacitive Energy Storage , 2011, Advanced materials.

[128]  X. Lou,et al.  Formation of Yolk‐Shelled Ni–Co Mixed Oxide Nanoprisms with Enhanced Electrochemical Performance for Hybrid Supercapacitors and Lithium Ion Batteries , 2015 .

[129]  N. Wu,et al.  Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor , 2002 .

[130]  Guangwu Yang,et al.  Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. , 2008, Chemical communications.

[131]  S. Ogale,et al.  Yogurt: a novel precursor for heavily nitrogen doped supercapacitor carbon , 2015 .

[132]  Hongbin Cao,et al.  KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors , 2014 .

[133]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[134]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[135]  Lu Wang,et al.  Flexible Solid-State Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI. , 2015, Journal of the American Chemical Society.

[136]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[137]  Xiao‐Qing Yang,et al.  Nitrogen-Enriched Nanocarbons with a 3-D Continuous Mesopore Structure from Polyacrylonitrile for Supercapacitor Application , 2010 .

[138]  C. Grey,et al.  In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. , 2013, Accounts of chemical research.

[139]  Yongyao Xia,et al.  A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system , 2005 .

[140]  Yongyao Xia,et al.  A Nitrogen-doped Hierarchical Mesoporous/Microporous Carbon for Supercapacitors , 2014 .

[141]  Chi-Chang Hu,et al.  Effects of preparation variables on the deposition rate and physicochemical properties of hydrous ruthenium oxide for electrochemical capacitors , 2001 .

[142]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[143]  F. Béguin,et al.  Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte , 2012 .

[144]  Yongyao Xia,et al.  Ordered Hierarchical Mesoporous/Microporous Carbon Derived from Mesoporous Titanium‐Carbide/Carbon Composites and its Electrochemical Performance in Supercapacitor , 2011 .

[145]  C. Lokhande,et al.  Characterization of honeycomb-like "β-Ni(OH) 2 " thin films synthesized by chemical bath deposition method and their supercapacitor application , 2009 .

[146]  M. Oschatz,et al.  Interaction of electrolyte molecules with carbon materials of well-defined porosity: characterization by solid-state NMR spectroscopy. , 2013, Physical chemistry chemical physics : PCCP.

[147]  Mathieu Toupin,et al.  A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte , 2004 .

[148]  H. Gong,et al.  The Sol-Gel-Derived Nickel-Cobalt Oxides with High Supercapacitor Performances , 2011 .

[149]  O. Park,et al.  An Electrochemical Capacitor Based on a Ni ( OH ) 2/Activated Carbon Composite Electrode , 2002 .

[150]  Lei Zhang,et al.  A review of electrolyte materials and compositions for electrochemical supercapacitors. , 2015, Chemical Society reviews.

[151]  M. Armand,et al.  Building better batteries , 2008, Nature.

[152]  Claus Daniel,et al.  Handbook of Battery Materials: DANIEL:HBK BATTERY MAT E2 O-BK , 2011 .

[153]  Y. Murakami,et al.  Design of oxide electrodes with large surface area , 2000 .

[154]  F. Béguin,et al.  High-energy density graphite/AC capacitor in organic electrolyte , 2008 .

[155]  Yongyao Xia,et al.  Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly , 2007 .

[156]  Yongyao Xia,et al.  Ordered mesoporous/microporous carbon sphere arrays derived from chlorination of mesoporous TiC/C composite and their application for supercapacitors , 2012 .

[157]  Chi-Chang Hu,et al.  Ideal asymmetric supercapacitors consisting of polyaniline nanofibers and graphene nanosheets with proper complementary potential windows , 2010 .

[158]  F. N. Ani,et al.  Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors – A review , 2014 .

[159]  Chi-Chang Hu,et al.  Synthesis and Characterization of Sodium-Doped MnO2 for the Aqueous Asymmetric Supercapacitor Application , 2015 .

[160]  D. Bélanger,et al.  Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes , 2011 .

[161]  H. Yoon,et al.  Nanostructured Electrode Materials for Electrochemical Capacitor Applications , 2015, Nanomaterials.

[162]  M. Sanjuán,et al.  Single-Walled Carbon Nanotubes as Electrodes in Supercapacitors , 2004 .

[163]  W. Sugimoto,et al.  Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. , 2003, Angewandte Chemie.

[164]  Pseudocapacitive characteristic of lithium ion storage in hydrogen titanate nanotubes , 2006 .

[165]  Yunlong Zhao,et al.  Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance , 2013, Nature Communications.

[166]  Yongyao Xia,et al.  Layered H2Ti6O13‐Nanowires: A New Promising Pseudocapacitive Material in Non‐Aqueous Electrolyte , 2012 .

[167]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[168]  Jim P. Zheng,et al.  Ruthenium Oxide‐Carbon Composite Electrodes for Electrochemical Capacitors , 1999 .

[169]  John Wang,et al.  Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. , 2010, Journal of the American Chemical Society.

[170]  Yexiang Tong,et al.  Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials , 2013, Nature Communications.

[171]  Arumugam Manthiram,et al.  Amorphous Ruthenium‐Chromium Oxides for Electrochemical Capacitors , 1999 .

[172]  Yun Lu,et al.  Self-crosslinked polyaniline hydrogel electrodes for electrochemical energy storage , 2015 .

[173]  R. Ghodssi,et al.  Selective deposition of nanostructured ruthenium oxide using Tobacco mosaic virus for micro-supercapacitors in solid Nafion electrolyte , 2015 .