Electrochemical modeling of single particle intercalation battery materials with different thermodynamics

Abstract Current–voltage relations of a single intercalation battery electrode particle were modeled with the step current, step voltage, linear sweep voltage, and sinusoidal current signals. A solid solution with constant diffusivity, a solid solution with variable diffusivity, and a phase transformation material were considered for their thermodynamic and kinetic evaluations based on the regular solution model and the generalized Poisson–Nernst–Planck equations. The numerical simulation results were compared with known, small-signal solutions and experimental data throughout the article.

[1]  C. Montella LSV modelling of electrochemical systems through numerical inversion of Laplace transforms. I – The GS–LSV algorithm , 2008 .

[2]  J. Dahn,et al.  Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V , 2004 .

[3]  Tsutomu Ohzuku,et al.  Electrochemistry of manganese dioxide in lithium nonaqueous cell. I: X-ray diffractional study on the reduction of electrolytic manganese dioxide , 1990 .

[4]  Wei Lai Fourier analysis of complex impedance (amplitude and phase) in nonlinear systems: A case study of diodes , 2010 .

[5]  Minoru Inaba,et al.  Stage Transformation of Lithium‐Graphite Intercalation Compounds Caused by Electrochemical Lithium Intercalation , 1999 .

[6]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[7]  D. Scherson,et al.  Electrochemical characterization of lithiated transition metal oxide cathode particles in the absence of carbon, binders and other additives , 1999 .

[8]  R. Buck Kinetics of bulk and interfacial ionic motion: microscopic bases and limits for the nernst—planck equation applied to membrane systems☆ , 1984 .

[9]  Ann Marie Sastry,et al.  Mesoscale Modeling of a Li-Ion Polymer Cell , 2007 .

[10]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[11]  F. L. Cras,et al.  Optimized Lithium Iron Phosphate for High-Rate Electrochemical Applications , 2004 .

[12]  Doron Aurbach,et al.  Solid‐State Electrochemical Kinetics of Li‐Ion Intercalation into Li1 − x CoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS , 1999 .

[13]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[14]  D. Aurbach,et al.  Frumkin intercalation isotherm — a tool for the description of lithium insertion into host materials: a review , 1999 .

[15]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[16]  D. Aurbach,et al.  Comparison between Cottrell diffusion and moving boundary models for determination of the chemical diffusion coefficients in ion-insertion electrodes , 2005 .

[17]  W. Craig Carter,et al.  Diffuse interface model for structural transitions of grain boundaries , 2006 .

[18]  S. Selberherr,et al.  A review of hydrodynamic and energy-transport models for semiconductor device simulation , 2003, Proc. IEEE.

[19]  J A Warren,et al.  Phase field modeling of electrochemistry. I. Equilibrium. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Wei Lai,et al.  Thermodynamics and kinetics of phase transformation in intercalation battery electrodes – phenomenological modeling , 2010 .

[21]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[22]  Dahn,et al.  Phase diagram of LixC6. , 1991, Physical review. B, Condensed matter.

[23]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[24]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[25]  Heon-Cheol Shin,et al.  The kinetics of lithium transport through Li1−δCoO2 by theoretical analysis of current transient , 1999 .

[26]  Hung-Chih Chang,et al.  Polarization in Electrolytic Solutions. Part I. Theory , 1952 .

[27]  Wei Lai,et al.  Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt|SDC|BSCF. , 2008, Physical chemistry chemical physics : PCCP.

[28]  R. Buck,et al.  Origins of finite transmission lines for exact representations of transport by the Nernst–Planck equations for each charge carrier , 1999 .

[29]  R. Kostecki,et al.  Electrochemical Studies of the LiFePO4 Thin Films Prepared with Pulsed Laser Deposition , 2003 .

[30]  Thomas F. Marinis,et al.  Ultrahigh‐Energy‐Density Microbatteries Enabled by New Electrode Architecture and Micropackaging Design , 2010, Advanced materials.

[31]  W. Craig Carter,et al.  Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines , 2010 .

[32]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[33]  Jeff Wolfenstine,et al.  Kinetic Study of the Electrochemical FePO 4 to LiFePO 4 Phase Transition , 2007 .

[34]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[35]  Wei Lai,et al.  Mathematical Modeling of Porous Battery Electrodes-Revisit of Newman's Model , 2011 .

[36]  Robert Dominko,et al.  The meaning of impedance measurements of LiFePO4 cathodes: A linearity study , 2007 .

[37]  T. Jacobsen,et al.  Diffusion impedance in planar, cylindrical and spherical symmetry , 1995 .

[38]  Robert A. Huggins,et al.  Thermodynamic and Mass Transport Properties of “ LiAl ” , 1979 .

[39]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[40]  Doron Aurbach,et al.  A review on the solid-state ionics of electrochemical intercalation processes: How to interpret properly their electrochemical response , 2008 .

[41]  Sangtae Kim,et al.  On the conductivity mechanism of nanocrystalline ceria , 2002 .

[42]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[43]  Keld West,et al.  Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources , 1979 .

[44]  A. Virkar Transport through mixed proton, oxygen ion and electron (hole) conductors: Goldman–Hodgkin–Katz-type equation , 2009 .

[45]  Yoji Sakurai,et al.  Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries , 2002 .

[46]  J. Diard,et al.  Linear diffusion impedance. General expression and applications , 1999 .

[47]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  J. Dahn,et al.  Lithium Intercalation in Lixmo6se8 - a Model Mean-Field Lattice Gas , 1984 .

[49]  C. Montella Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials. Part I. Influence of charge transfer kinetics and ohmic potential drop , 2002 .

[50]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[51]  R. S. Eisenberg,et al.  Computing the Field in Proteins and Channels , 2010, 1009.2857.

[52]  Shin Fujitani,et al.  Study of LiFePO4 by Cyclic Voltammetry , 2007 .

[53]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[54]  Svein Stølen,et al.  Chemical thermodynamics of materials , 2004 .

[55]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[56]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[57]  Joachim Maier,et al.  Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications , 2001 .

[58]  S. Pyun,et al.  Investigation of Lithium Transport through Lithium Cobalt Dioxide Thin Film Sputter-deposited by Analysis of Cyclic Voltammogram , 2001 .

[59]  Ming Tang,et al.  Model for the Particle Size, Overpotential, and Strain Dependence of Phase Transition Pathways in Storage Electrodes: Application to Nanoscale Olivines , 2009 .

[60]  Anil V. Virkar,et al.  Theoretical analysis of the role of interfaces in transport through oxygen ion and electron conducting membranes , 2005 .

[61]  Sossina M. Haile,et al.  Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria , 2005 .

[62]  Katsuyo Thornton,et al.  Modelling the evolution of phase boundaries in solids at the meso- and nano-scales , 2003 .

[63]  Q. Horn,et al.  The Effect of Microstructure on the Galvanostatic Discharge of Graphite Anode Electrodes in LiCoO2-Based Rocking-Chair Rechargeable Batteries , 2009 .

[64]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[65]  Juan Bisquert,et al.  Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer , 2002 .

[66]  S. Pyun,et al.  Mechanisms of lithium transport through transition metal oxides studied by analysis of current transients , 2001 .

[67]  Richard P. Buck,et al.  Transmission line equivalent circuit models for electrochemical impedances , 1981 .

[68]  Y. Chiang,et al.  Comparative Study of Lithium Transport Kinetics in Olivine Cathodes for Li-ion Batteries† , 2009 .

[69]  Tsutomu Ohzuku,et al.  Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell , 1990 .

[70]  Wei Lai,et al.  Small-Signal Apparent Diffusion Impedance of Intercalation Battery Electrodes , 2011 .

[71]  J. Maier,et al.  Current Equation for Hopping Ions on a Lattice under High Driving Force and Nondilute Concentration , 2009 .

[72]  W. Craig Carter,et al.  Size-Dependent Lithium Miscibility Gap in Nanoscale Li1 − x FePO4 , 2007 .

[73]  Gerbrand Ceder,et al.  Electrochemical modeling of intercalation processes with phase field models , 2004 .

[74]  J A Warren,et al.  Phase field modeling of electrochemistry. II. Kinetics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[76]  V. Freger,et al.  Characterization of ion transport in thin films using electrochemical impedance spectroscopy: I. Principles and theory , 2007 .

[77]  E. Deiss Spurious chemical diffusion coefficients of Li+ in electrode materials evaluated with GITT , 2005 .

[78]  Ralph E. White,et al.  Approximate Solutions for Galvanostatic Discharge of Spherical Particles I. Constant Diffusion Coefficient , 2001 .

[79]  J. Barker,et al.  An electrochemical investigation into the lithium insertion properties of LixCoO2 , 1996 .

[80]  E. Deiss,et al.  Spurious potential dependence of diffusion coefficients in Li+ insertion electrodes measured with PITT , 2002 .

[81]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[82]  J. Tarascon,et al.  Effect of texture on the electrochemical properties of LiFePO4 thin films , 2005 .

[83]  D. Aurbach,et al.  Two parallel diffusion paths model for interpretation of PITT and EIS responses from non-uniform intercalation electrodes , 2004 .

[84]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[85]  D. Aurbach,et al.  The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling , 1997 .

[86]  Tadeusz Bak,et al.  Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties , 1989 .

[87]  Robert W. Balluffi,et al.  Kinetics Of Materials , 2005 .