Reducing power with dynamic critical path information

Recent research has shown that dynamic information regarding instruction criticality can be used to increase microprocessor performance. Critical path information can also be used in processors to achieve a better balance of power and performance. This paper uses the output of a dynamic critical path predictor to decrease the power consumption of key portions of the processor without incurring a corresponding decrease in performance. The optimizations include effective use of functional units with different power and latency characteristics and decreased issue logic power.

[1]  James E. Smith,et al.  Complexity-Effective Superscalar Processors , 1997, ISCA.

[2]  Rastislav Bodík,et al.  Focusing processor policies via critical-path prediction , 2001, Proceedings 28th Annual International Symposium on Computer Architecture.

[3]  Norman P. Jouppi Cache write policies and performance , 1993, ISCA '93.

[4]  Dean M. Tullsen,et al.  Fellowship - Simulation And Modeling Of A Simultaneous Multithreading Processor , 1996, Int. CMG Conference.

[5]  Chris Wilkerson,et al.  Locality vs. criticality , 2001, ISCA 2001.

[6]  G. Sohi,et al.  A static power model for architects , 2000, Proceedings 33rd Annual IEEE/ACM International Symposium on Microarchitecture. MICRO-33 2000.

[7]  Margaret Martonosi,et al.  Dynamically exploiting narrow width operands to improve processor power and performance , 1999, Proceedings Fifth International Symposium on High-Performance Computer Architecture.

[8]  Brad Calder,et al.  Dynamic prediction of critical path instructions , 2001, Proceedings HPCA Seventh International Symposium on High-Performance Computer Architecture.

[9]  Margaret Martonosi,et al.  Dynamic thermal management for high-performance microprocessors , 2001, Proceedings HPCA Seventh International Symposium on High-Performance Computer Architecture.

[10]  Dirk Grunwald,et al.  Confidence estimation for speculation control , 1998, ISCA.

[11]  S. Thompson MOS Scaling: Transistor Challenges for the 21st Century , 1998 .

[12]  Brad Calder,et al.  Computing Along the Critical Path , 2002 .

[13]  Shekhar Y. Borkar,et al.  Design challenges of technology scaling , 1999, IEEE Micro.

[14]  Gary S. Tyson,et al.  Evaluating Design Tradeoffs in Dual Speed Pipelines , 2001 .

[15]  Seung-Moon Yoo,et al.  A framework for dynamic energy efficiency and temperature management , 2000, Proceedings 33rd Annual IEEE/ACM International Symposium on Microarchitecture. MICRO-33 2000.

[16]  Dean M. Tullsen,et al.  Power-sensitive multithreaded architecture , 2000, Proceedings 2000 International Conference on Computer Design.

[17]  Richard E. Kessler,et al.  The Alpha 21264 microprocessor architecture , 1998, Proceedings International Conference on Computer Design. VLSI in Computers and Processors (Cat. No.98CB36273).

[18]  Srilatha Manne,et al.  Power and performance tradeoffs using various caching strategies , 1998, Proceedings. 1998 International Symposium on Low Power Electronics and Design (IEEE Cat. No.98TH8379).

[19]  Margaret Martonosi,et al.  Wattch: a framework for architectural-level power analysis and optimizations , 2000, Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201).

[20]  Mahmut T. Kandemir,et al.  Energy-driven integrated hardware-software optimizations using SimplePower , 2000, Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201).