Multi-Band Frequency Transformations, Matching Networks and Amplifiers

In this paper, a technique for the synthesis of lumped element multi-band matching networks is proposed using frequency transformations. The proposed technique has been generalized for n -bands using 1→ n frequency transformations. The effect of the transformations on the bandwidth of the matching network and the effect of inductor losses on the transducer loss of the matching network are analyzed. A strategy to improve the efficiency of the matching networks in the presence of lossy components has been proposed. Applications of the proposed synthesis technique in the development and design of new multi-band LNA/PA architectures are discussed in detail with the help of design examples. In one of the design examples, the circuit has been prototyped and measured results are presented.

[1]  Binboga Siddik Yarman,et al.  Double broadband matching and the problem of reciprocal reactance 2n‐port cascade decomposition , 1984 .

[2]  Wasfy B. Mikhael,et al.  The Double Matching Problem: Analytic and Real Frequency Solutions , 1983 .

[3]  Mourad N. El-Gamal,et al.  Design Techniques of CMOS Ultra-Wide-Band Amplifiers for Multistandard Communications , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  Binboga Siddik Yarman,et al.  Design of Ultra Wideband Power Transfer Networks , 2010 .

[5]  Jonathan Borremans,et al.  A multiband LTE SAW-less modulator with −160dBc/Hz RX-band noise in 40nm LP CMOS , 2011, 2011 IEEE International Solid-State Circuits Conference.

[6]  Arthur Nieuwoudt,et al.  Numerical Design Optimization Methodology for Wideband and Multi-Band Inductively Degenerated Cascode CMOS Low Noise Amplifiers , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Reza Mahmoudi,et al.  A GSM/EDGE/WCDMA Adaptive Series-LC Matching Network Using RF-MEMS Switches , 2008, IEEE Journal of Solid-State Circuits.

[8]  Yucheng Liu,et al.  Design and Linearization of Concurrent Dual-Band Doherty Power Amplifier With Frequency-Dependent Power Ranges , 2011, IEEE Transactions on Microwave Theory and Techniques.

[9]  K. C. Garner Synthesis of linear communication networks. Vols. I and II. Wilhelm Caner. McGraw-Hill, New York, 1958. 862 pp. Illustrated. 151s. , 1959 .

[10]  Nathan M. Neihart,et al.  A Dual-Band 2.45/6 GHz CMOS LNA Utilizing a Dual-Resonant Transformer-Based Matching Network , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Omid Oliaei,et al.  A multiband multimode transmitter without driver amplifier , 2012, 2012 IEEE International Solid-State Circuits Conference.

[12]  R Fagotti,et al.  Concurrent Hex-Band GaN Power Amplifier for Wireless Communication Systems , 2011, IEEE Microwave and Wireless Components Letters.

[13]  D. Youla,et al.  A New Theory of Broad-band Matching , 1964 .

[14]  Mohammad Farazian,et al.  A Dual-Band CMOS CDMA Transmitter Without External SAW Filtering , 2010, IEEE Transactions on Microwave Theory and Techniques.

[15]  Ali Hajimiri,et al.  A Fully-Integrated Quad-Band GSM/GPRS CMOS Power Amplifier , 2008 .

[16]  Atsushi Fukuda,et al.  Concurrent multi-band power amplifier employing multi-section impedance transformer , 2011, 2011 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications.

[17]  Hsien-Shun Wu,et al.  A Dual-Band 10/24-GHz Amplifier Design Incorporating Dual-Frequency Complex Load Matching , 2012, IEEE Transactions on Microwave Theory and Techniques.

[18]  J. K. Fidler,et al.  Design of II Impedance Matching Networks , 1994 .

[19]  A. Kwan,et al.  Subsampling Feedback Loop Applicable to Concurrent Dual-Band Linearization Architecture , 2012, IEEE Transactions on Microwave Theory and Techniques.

[20]  Kiat Seng Yeo,et al.  A Wideband Low Power Low-Noise Amplifier in CMOS Technology , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  Li Zhang,et al.  A Wideband Inductorless LNA With Local Feedback and Noise Cancelling for Low-Power Low-Voltage Applications , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  E. Guillemin Synthesis of passive networks : theory and methods appropriate to the realization and approximation problems , 1957 .

[23]  Aarno Pärssinen Multimode-multiband transceivers for next generation of wireless communications , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[24]  M. A. Nikravan,et al.  T-section dual-band impedance transformer for frequency-dependent complex impedance loads , 2011 .

[25]  P. Colantonio,et al.  A Design Technique for Concurrent Dual-Band Harmonic Tuned Power Amplifier , 2008, IEEE Transactions on Microwave Theory and Techniques.

[26]  A. Akhnoukh,et al.  Adaptive Multi-Band Multi-Mode Power Amplifier Using Integrated Varactor-Based Tunable Matching Networks , 2006, IEEE Journal of Solid-State Circuits.

[27]  Hossein Hashemi,et al.  Concurrent multiband low-noise amplifiers-theory, design, and applications , 2002 .

[28]  Jin-Su Ko,et al.  A Low-Power CMOS SAW-Less Quad Band WCDMA/HSPA/HSPA+/1X/EGPRS Transmitter , 2009, IEEE Journal of Solid-State Circuits.

[29]  D.L. Kaczman,et al.  A single-chip tri-band (2100, 1900, 850/800 MHz) WCDMA/HSDPA cellular transceiver , 2006, IEEE Journal of Solid-State Circuits.

[30]  Shouri Chatterjee,et al.  Design of concurrent multi-band matching networks , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[31]  Hooman Darabi,et al.  A Low-Power GSM/EDGE/WCDMA Polar Transmitter in 65-nm CMOS , 2011, IEEE Journal of Solid-State Circuits.

[32]  Chunna Zhang,et al.  A novel reconfigurable power amplifier structure for multi-band and multi-mode portable wireless applications using a reconfigurable die and a switchable output matching network , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[33]  P. Colantonio,et al.  Design of a Concurrent Dual-Band 1.8–2.4-GHz GaN-HEMT Doherty Power Amplifier , 2012, IEEE Transactions on Microwave Theory and Techniques.

[34]  Chul Soon Park,et al.  A Reconfigurable Quad-Band CMOS Class E Power Amplifier for Mobile and Wireless Applications , 2011, IEEE Microwave and Wireless Components Letters.

[35]  Ferran Paredes,et al.  Dual-Band Impedance-Matching Networks Based on Split-Ring Resonators for Applications in RF Identification (RFID) , 2010, IEEE Transactions on Microwave Theory and Techniques.

[36]  Ming-Lin Chuang Dual-Band Impedance Transformer Using Two-Section Shunt Stubs , 2010, IEEE Transactions on Microwave Theory and Techniques.

[37]  I. Hunter,et al.  Multi-band matching technique for microstrip patch antenna transceivers , 2007, 2007 European Microwave Conference.

[38]  R. Fano Theoretical limitations on the broadband matching of arbitrary impedances , 1950 .