Two-electron spin correlations in precision placed donors in silicon

Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16 ± 1 nm. By utilising an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P−1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P−1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.Donor impurities in silicon are promising candidates as qubits but in order to create a large-scale quantum computer inter-qubit coupling must be introduced by precise positioning of the donors. Here the authors demonstrate the fabrication, manipulation and readout of a two qubit phosphorous donor device.

[1]  M. Y. Simmons,et al.  A single atom transistor , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[2]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[3]  P. Cullis,et al.  Determination of the donor pair exchange energy in phosphorus-doped silicon , 1970 .

[4]  B. Koiller,et al.  Theory of one and two donors in silicon , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  M. Rashidi,et al.  Lithography for robust and editable atomic-scale silicon devices and memories , 2018, Nature Communications.

[6]  J. Moussa,et al.  Multivalley effective mass theory simulation of donors in silicon , 2014, 1408.3159.

[7]  M Y Simmons,et al.  Atomically precise placement of single dopants in si. , 2003, Physical review letters.

[8]  Voltage control of exchange coupling in phosphorus doped silicon , 2004, cond-mat/0402642.

[9]  Søren Andresen,et al.  Controlled shallow single ion implantation in silicon using an active substrate for sub-20 keV ions , 2005 .

[10]  Gerhard Klimeck,et al.  Spin blockade and exchange in Coulomb-confined silicon double quantum dots. , 2014, Nature nanotechnology.

[11]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[12]  Michelle Y. Simmons,et al.  Addressable electron spin resonance using donors and donor molecules in silicon , 2018, Science Advances.

[13]  L. M. K. Vandersypen,et al.  Single-Shot Correlations and Two-Qubit Gate of Solid-State Spins , 2011, Science.

[14]  R. Lathe Phd by thesis , 1988, Nature.

[15]  Xuedong Hu,et al.  Strain effects on silicon donor exchange: Quantum computer architecture considerations , 2002 .

[16]  S Rogge,et al.  Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots , 2015, Nature Communications.

[17]  L.C.L. Hollenberg,et al.  Donor electron wave functions for phosphorus in silicon : Beyond effective-mass theory , 2005 .

[18]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[19]  R. Rahman,et al.  Spin readout and addressability of phosphorus-donor clusters in silicon , 2012, Nature Communications.

[20]  Michelle Y. Simmons,et al.  Atomic-scale, all epitaxial in-plane gated donor quantum dot in silicon. , 2009, Nano letters.

[21]  Gerhard Klimeck,et al.  Spin-lattice relaxation times of single donors and donor clusters in silicon. , 2014, Physical review letters.

[22]  H. Ryu,et al.  Ohm’s Law Survives to the Atomic Scale , 2012, Science.

[23]  Michelle Y. Simmons,et al.  Radio frequency reflectometry and charge sensing of a precision placed donor in silicon , 2015, 1509.03315.

[24]  I. Appelbaum,et al.  Anisotropy-driven spin relaxation in germanium. , 2013, Physical review letters.

[25]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[26]  Xuedong Hu,et al.  Charge-fluctuation-induced dephasing of exchange-coupled spin qubits. , 2006, Physical review letters.

[27]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[28]  E. Langlois,et al.  Scanning capacitance microscopy registration of buried atomic-precision donor devices , 2015, Nanotechnology.

[29]  B. Weber,et al.  Engineering independent electrostatic control of atomic-scale (∼4 nm) silicon double quantum dots. , 2012, Nano letters.

[30]  L. Hollenberg,et al.  Atomically engineered electron spin lifetimes of 30 s in silicon , 2017, Science Advances.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[33]  M Xiao,et al.  Measurement of the spin relaxation time of single electrons in a silicon metal-oxide-semiconductor-based quantum dot. , 2010, Physical review letters.

[34]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[35]  Xuedong Hu,et al.  Exchange in silicon-based quantum computer architecture. , 2002, Physical review letters.

[36]  B. Weber,et al.  High-Fidelity Rapid Initialization and Read-Out of an Electron Spin via the Single Donor D(-) Charge State. , 2015, Physical review letters.

[37]  L. Hollenberg,et al.  Sensing of fluctuating nanoscale magnetic fields using nitrogen-vacancy centers in diamond. , 2009, Physical review letters.

[38]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[39]  Gerhard Klimeck,et al.  Stark tuning of the charge states of a two-donor molecule in silicon , 2009, Nanotechnology.

[40]  Gerhard Klimeck,et al.  High precision quantum control of single donor spins in silicon. , 2007, Physical review letters.

[41]  Paul Adrien Maurice Dirac,et al.  On the Theory of quantum mechanics , 1926 .

[42]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[43]  Gerhard Klimeck,et al.  Highly tunable exchange in donor qubits in silicon , 2016, npj Quantum Information.

[44]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[45]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[46]  H. Hasegawa Spin-Lattice Relaxation of Shallow Donor States in Ge and Si through a Direct Phonon Process , 1960 .

[47]  Andrea Morello,et al.  Robust Two-Qubit Gates for Donors in Silicon Controlled by Hyperfine Interactions , 2013, 1312.2197.

[48]  J. O'Brien,et al.  Universal linear optics , 2015, Science.