Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations
暂无分享,去创建一个
[1] Allan P. Fordy,et al. Some remarkable nonlinear transformations , 1980 .
[2] H. Morris. Prolongation structures and a generalized inverse scattering problem , 1976 .
[3] I. Gel'fand,et al. The resolvent and Hamiltonian systems , 1977 .
[4] R. Hirota. Direct Methods in Soliton Theory (非線形現象の取扱いとその物理的課題に関する研究会報告) , 1976 .
[5] Allan P. Fordy,et al. Factorization of operators.II , 1981 .
[6] Robert Conte,et al. Invariant Painlevé analysis of partial differential equations , 1989 .
[7] F. Estabrook,et al. Prolongation structures of nonlinear evolution equations , 1975 .
[8] Pierre C. Sabatier. Inverse Methods in Action , 1990 .
[9] R. Hirota,et al. N-Soliton Solutions of Model Equations for Shallow Water Waves , 1976 .
[10] R. K. Dodd,et al. Bäcklund transformations for the sine–Gordon equations , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[11] J. Weiss. THE PAINLEVE PROPERTY FOR PARTIAL DIFFERENTIAL EQUATIONS. II. BACKLUND TRANSFORMATION, LAX PAIRS, AND THE SCHWARZIAN DERIVATIVE , 1983 .
[12] M. Tabor,et al. The Painlevé property for partial differential equations , 1983 .
[13] R. Anderson,et al. Systems of ordinary differential equations with nonlinear superposition principles , 1982 .
[14] D. Levi. Toward a unification of the various techniques used to integrate non-linear partial differential equations: Bäcklund and Darboux transformations vs. dressing method , 1986 .