Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films

We present a study of optically pumped waveguide and microcavity lasers based on vacuum-deposited thin films of small molecular weight organic semiconductors. Lasing action in waveguide lasers is characterized by high output peak power (50 W), high differential quantum efficiency (70%), low lasing threshold (1 μJ/cm2), and long operational lifetime (>106 laser pulses at 100 times the threshold pump power). Microcavity laser characteristics include 3 W peak output power, 300 μJ/cm2 lasing threshold, and lifetimes of >106 pump laser pulses (operating at 6 times the threshold power). We demonstrate wavelength variability from 460 to 700 nm by changing the composition of the organic films. The confinement of excitations on the dopant molecules leads to quantum dot-like behavior such as high temperature stability of the lasing threshold, output power, and emission wavelength in the temperature range from 0 to 140 °C. The linewidth of laser emission from microcavity structures is found to be 0.2±0.1 A and is tr...

[1]  S. Forrest,et al.  Laser action in organic semiconductor waveguide and double-heterostructure devices , 1997, Nature.

[2]  Thomas N. Jackson,et al.  Temperature-independent transport in high-mobility pentacene transistors , 1998 .

[3]  山本 喜久,et al.  Coherence, amplification, and quantum effects in semiconductor lasers , 1991 .

[4]  Mats Andersson,et al.  Semiconducting Polymers: A New Class of Solid-State Laser Materials , 1996, Science.

[5]  F. Schäfer,et al.  Dye lasers , 1973 .

[6]  Daniel Moses,et al.  Semiconducting polymer distributed feedback lasers , 1998 .

[7]  Richard H. Friend,et al.  High Peak Brightness Polymer Light‐Emitting Diodes , 1998 .

[8]  Victor V. Krasnikov,et al.  Blue superradiance from neat semiconducting alternating copolymer films , 1996 .

[9]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[10]  E. Yablonovitch,et al.  Thermodynamics of daylight-pumped lasers. , 1983, Optics letters.

[11]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[12]  Masanori Ozaki,et al.  Mirrorless Lasing in Conducting Polymer poly(2,5-dioctyloxy-p-phenylenevinylene) Films , 1996 .

[13]  Hiroshi Tokailin,et al.  Transient behavior of organic thin film electroluminescence , 1992 .

[14]  B. Dunn,et al.  Laser behavior and photostability characteristics of organic dye doped silicate gel materials. , 1990, Applied optics.

[15]  Toomas H. Allik,et al.  High-efficiency pyrromethene doped solid-state dye lasers , 1993 .

[16]  Zeev Valy Vardeny,et al.  Plastic microring lasers on fibers and wires , 1998 .

[17]  B. H. Soffer,et al.  CONTINUOUSLY TUNABLE, NARROW‐BAND ORGANIC DYE LASERS , 1967 .

[18]  Aleksandr A. Manenkov,et al.  Efficient plastic-host dye lasers , 1984 .

[19]  R. H. Friend,et al.  Lasing from conjugated-polymer microcavities , 1996, Nature.

[20]  Stephen R. Forrest,et al.  Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts , 1998 .

[21]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals , 1982 .

[22]  S. Forrest,et al.  Reliability and degradation of organic light emitting devices , 1994 .

[23]  Ardie D. Walser,et al.  Bimolecular reactions of singlet excitons in tris(8-hydroxyquinoline) aluminum , 1996 .

[24]  Stephen R. Forrest,et al.  A metal-free cathode for organic semiconductor devices , 1998 .

[25]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[26]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[27]  Richard H. Friend,et al.  Spectral narrowing in optically pumped poly (p‐phenylenevinylene) Films , 1997 .

[28]  Magnus Berggren,et al.  Stimulated emission and lasing in dye-doped organic thin films with Forster transfer , 1997 .

[29]  C. Henry Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers , 1986 .

[30]  R. Slusher,et al.  Polymer microdisk and microring lasers. , 1995, Optics letters.

[31]  S. Forrest,et al.  Temperature independent performance of organic semiconductor lasers , 1997 .

[32]  S. Kovalenko,et al.  Femtosecond hole-burning spectroscopy of the dye DCM in solution: the transition from the locally excited to a charge-transfer state , 1996 .

[33]  U. Brackmann Lambdachrome laser dyes , 1986 .

[34]  Kozlov,et al.  Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities , 1998, Science.

[35]  Yoshio Taniguchi,et al.  DOPED ORGANIC LIGHT EMITTING DIODES HAVING A 650-NM-THICK HOLE TRANSPORT LAYER , 1998 .

[36]  Roberto Sastre,et al.  Solid‐state dye lasers based on polymers incorporating covalently bonded modified rhodamine 6G , 1996 .

[37]  C. H. Chen,et al.  Electroluminescence of doped organic thin films , 1989 .

[38]  Stephen R. Forrest,et al.  Optically pumped blue organic semiconductor lasers , 1998 .

[39]  A. Dodabalapur,et al.  Light amplification in organic thin films using cascade energy transfer , 1997, Nature.

[40]  H. Kogelnik,et al.  STIMULATED EMISSION IN A PERIODIC STRUCTURE , 1971 .

[41]  S R Forrest,et al.  Vacuum-deposited, nonpolymeric flexible organic light-emitting devices. , 1997, Optics letters.

[42]  P. Georges,et al.  Efficient tunable solid-state laser near 630 nm using sulforhodamine 640-doped silica gel. , 1989, Optics letters.

[43]  R. Friend,et al.  New semiconductor device physics in polymer diodes and transistors , 1988, Nature.

[44]  Stephen R. Forrest,et al.  Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices , 1996 .

[45]  Mats Andersson,et al.  “Plastic” lasers: Comparison of gain narrowing with a soluble semiconducting polymer in waveguides and microcavities , 1997 .