Review of Progress on Computational Modeling and Simulation of the Zinc Electrowinning Production Process

AbstractZinc is an important energy material in the battery industry. Modeling and simulation are less expensive and more efficient ways to study and optimize the zinc electrowinning process. A critical review of research related to models and simulations of this process is presented herein, along with associated equations and methodologies. These equations or models are categorized into four different but closely related types: empirical equations for current efficiency prediction, equations for the related parameters in the electrowinning process, fundamental electrochemical models, and computational fluid dynamics (CFD) models. These equations or models are focused on certain aspects of the zinc electrowinning process and are applied under specific conditions. However, most of them are simplified, and many significant aspects of the zinc electrowinning process are ignored, limiting their accuracy. Promising future developments regarding modeling and simulation of the zinc electrowinning process are discussed.

[1]  P. Zhou,et al.  Optimization of operating conditions and structure parameters of zinc electrolytic cell based on numerical simulation for electrolyte flow , 2014 .

[2]  M. Leahy,et al.  Experimental Validation of a Computational Fluid Dynamics Model of Copper Electrowinning , 2010 .

[3]  J. Nava,et al.  Current efficiency studies of the zinc electrowinning process on aluminum rotating cylinder electrode (RCE) in sulfuric acid medium: Influence of different additives , 2007 .

[4]  F. Lapicque,et al.  An electrochemical study of zinc deposition in a sulfate medium , 1992 .

[5]  A. C. Scott,et al.  Experimental determination of the factors affecting zinc electrowinning efficiency , 1988 .

[6]  Jeonghun Cho,et al.  A Fully Optimized Electrowinning Cell for Achieving a Uniform Current Distribution at Electrodes Utilizing Sampling-Based Sensitivity Approach , 2015 .

[7]  G. Kreysa,et al.  Modelling of gas evolving electrolysis cells. I. The gas voidage problem , 1985 .

[8]  D. J. Mackinnon,et al.  Characterization of impurity effects in zinc electrowinning from industrial acid sulphate electrolyte , 1987 .

[9]  Ivan Ivanov,et al.  Increased current efficiency of zinc electrowinning in the presence of metal impurities by addition of organic inhibitors , 2004 .

[10]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[11]  J. Moghaddam,et al.  A new approach to the optimisation of zinc electrolyte cold purification process by Taguchi’s method , 2014 .

[12]  Hideaki Kita,et al.  PERIODIC VARIATION OF EXCHANGE CURRENT DENSITY OF HYDROGEN ELECTRODE REACTION WITH ATOMIC NUMBER , 1966 .

[13]  M. Philip Schwarz,et al.  Improving zinc processing using computational fluid dynamics modelling – Successes and opportunities , 2012 .

[14]  Michael Mahon,et al.  Development and Implementation of a Zinc Electrowinning Process Simulation , 2012 .

[15]  Michael Mahon,et al.  Application and optimisation studies of a zinc electrowinning process simulation , 2014 .

[16]  Walter K. Nader,et al.  Prediction of transport processes within porous media: Diffusive flow processes within an homogeneous swarm of spherical particles , 1973 .

[17]  Charles W. Tobias,et al.  Resistance of a Planar Array of Spheres: Gas Bubbles on an Electrode , 1982 .

[18]  Charles W. Tobias,et al.  Conductivities in Emulsions , 1961 .

[19]  M. Free,et al.  Editors' Choice—Modeling and Validation of Local Electrowinning Electrode Current Density Using Two Phase Flow and Nernst–Planck Equations , 2018 .

[20]  H. Vogt,et al.  Gas-Evolving Electrodes , 1983 .

[21]  R. Savinell,et al.  A Modified Constriction Model for the Resistivity of a Bubble Curtain on a Gas Evolving Electrode , 1983 .

[22]  W. James,et al.  Correlation between mass transfer and operating parameters in zinc electrowinning , 1991 .

[23]  C. Walton,et al.  Parallel Plate Electrochemical Reactor Model: Material Balance Closure and a Simplification , 1986 .

[24]  Fritz Scholz,et al.  The Electrochemical Society , 2017 .

[25]  K. Bouzek,et al.  Current Distribution at the Electrodes in Zinc Electrowinning Cells , 1995 .

[26]  L. Janssen,et al.  Electrolytic resistance of solution layers at hydrogen and oxygen evolving electrodes in alkaline solution , 1983 .

[27]  M. Degrez,et al.  Evaluation of mass transport in copper and zinc electrodeposition using tracer methods , 1989 .

[28]  C. Zhi,et al.  Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long‐Life Zinc Rechargeable Aqueous Batteries , 2018, Advanced Energy Materials.

[29]  G. Barton,et al.  Industrial applications of a mathematical model for the zinc electrowinning process , 1994 .

[30]  Geoff Barton,et al.  A validated mathematical model for a zinc electrowinning cell , 1992 .

[31]  Mamadou Lamine Doumbia,et al.  New multi-physics approach for modelling and design of alkaline electrolyzers , 2012 .

[32]  R. White,et al.  Parallel Plate Electrochemical Reactor Model , 1983 .

[33]  J. Dukovic,et al.  The Influence of Attached Bubbles on Potential Drop and Current Distribution at Gas‐Evolving Electrodes , 1987 .

[34]  Charles W. Tobias,et al.  On the Conductivity of Dispersions , 1959 .

[35]  R. P. Das,et al.  Oxidative ammonia leaching of sphalerite: Part I: Noncatalytic kinetics , 2002 .

[36]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .

[37]  M. Bestetti,et al.  Physicochemical Properties of ZnSO4−H2SO4−H2O Electrolytes of Relevance to Zinc Electrowinning , 2006 .

[38]  Koichi Murakami,et al.  Bubble Effects on the Solution IR Drop in a Vertical Electrolyzer Under Free and Forced Convection , 1980 .

[39]  Geoff Barton,et al.  Scale-up effects in modelling a full-size zinc electrowinning cell , 1992 .

[40]  L. Janssen,et al.  Ohmic potential drop during alkaline water electrolysis , 1982 .

[41]  S. Prager,et al.  DIFFUSION AND VISCOUS FLOW IN CONCENTRATED SUSPENSIONS , 1963 .

[42]  James Clerk Maxwell,et al.  A Treatise on Electricity and Magnetism, Vol. 2 , 2018 .

[43]  I. W. Wark,et al.  The electrodeposition of zinc from acidified zinc sulphate solution , 1979 .

[44]  M. Free,et al.  Modeling Zinc Electrowinning for Current Efficiency Prediction Based on Nernst-Plank Equation and Electrode Gas Evolution Reaction Kinetics , 2018 .

[45]  Y. Awakura,et al.  Determination of the diffusion coefficients of CuSO4, ZnSO4, and NiSO4 in aqueous solution , 1988 .

[46]  K. Cathro Mass Transport during Zinc Electrowinning at High Current Density , 1992 .