Adaptations for the maintenance of water balance by three species of Antarctic mites

[1]  D. Denlinger,et al.  Suppression of water loss during adult diapause in the northern house mosquito, Culex pipiens , 2007, Journal of Experimental Biology.

[2]  D. Denlinger,et al.  Habitat requirements of the seabird tick, Ixodes uriae (Acari: Ixodidae), from the Antarctic Peninsula in relation to water balance characteristics of eggs, nonfed and engorged stages , 2007, Journal of Comparative Physiology B.

[3]  J. Benoit,et al.  Water Balance Components in Adults of Terrestrial Red Mite Balaustium sp. (Acarina: Erythraeidae) , 2006 .

[4]  J. Benoit,et al.  Critical transition temperature and activation energy with implications for arthropod cuticular permeability. , 2005, Journal of insect physiology.

[5]  J. Benoit,et al.  Temperature-induced alteration of cuticular lipids are not required for transition phenomenon in ticks , 2005 .

[6]  J. Benoit,et al.  Prolonged maintenance of water balance by adult females of the American spider beetle, Mezium affine Boieldieu, in the absence of food and water resources. , 2005, Journal of insect physiology.

[7]  K. Gaede On the water balance ofPhytoseiulus persimilis A.-H. and its ecological significance , 1992, Experimental & Applied Acarology.

[8]  W. Block,et al.  Cold tolerance of two Antarctic terrestrial arthropods , 1978, Experientia.

[9]  J. Yoder A comparison of the water balance characteristics of Typhlodromus occidentalis and Amblyseius finlandicus mites (Acari: Phytoseiidae) and evidence for the site of water vapour uptake , 1998, Experimental & Applied Acarology.

[10]  J. Yoder,et al.  Food and water resources used by the Madagascan hissing-cockroach mite, Gromphadorholaelaps schaeferi , 1995, Experimental & Applied Acarology.

[11]  K. Shimada,et al.  Variation in summer cold-hardiness of the Antarctic oribatid mite Alaskozetes antarcticus from contrasting habitats on King George Island , 1992, Polar Biology.

[12]  E. Glass,et al.  Short communication. Clustering reduces water loss by adult American house dust mites Dermatophagoides farinae (Acari: Pyroglyphidae) , 2004, Experimental & Applied Acarology.

[13]  P. Convey,et al.  Temperature preferences of the mite, Alaskozetes antarcticus, and the collembolan, Cryptopygus antarcticus from the maritime Antarctic , 2003 .

[14]  M. Worland,et al.  Desiccation stress at sub-zero temperatures in polar terrestrial arthropods. , 2003, Journal of insect physiology.

[15]  A. Gibbs,et al.  Lipid melting and cuticular permeability: new insights into an old problem. , 2002, Journal of insect physiology.

[16]  J. Yoder,et al.  Water relations of Julolaelaps sp. (Mesostigmata: Iphiopsididae), with inferences on its biology , 2001 .

[17]  J. Yoder,et al.  Xeric survival without drinking by hypopodes of Hemisarcoptes cooremani (Acari: Hemisarcoptidae) , 2001 .

[18]  Bale,et al.  Influence of temperature on the hygropreference of the Collembolan, Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus from the maritime Antarctic. , 2001, Journal of insect physiology.

[19]  J. Yoder,et al.  Water requirements of adult females of the honey bee parasitic mite, Varroa jacobsoni (Acari: Varroidae) and implications for control , 1999 .

[20]  Gibbs,et al.  Effects of lipid phase transitions on cuticular permeability: model membrane and in situ studies , 1999, The Journal of experimental biology.

[21]  Bayley,et al.  Water vapor absorption in arthropods by accumulation of myoinositol and glucose , 1999, Science.

[22]  William Block,et al.  The biology, life cycle and ecophysiology of the Antarctic mite Alaskozetes antarcticus , 1995 .

[23]  N. F. Hadley Water Relations of Terrestrial Arthropods , 1994 .

[24]  M. Worland,et al.  Survival and water loss in some Antarctic arthropods , 1986 .

[25]  R. Cannon Effects of contrasting relative humidities on the cold tolerance of an Antarctic mite , 1986 .

[26]  G. Wharton 14 – Water Balance of Insects , 1985 .

[27]  G. A. Kerkut,et al.  Comprehensive insect physiology, biochemistry, and pharmacology , 1985 .

[28]  W. Block Terrestrial arthropods and low temperature. , 1981, Cryobiology.

[29]  Sokal Rr,et al.  Biometry: the principles and practice of statistics in biological research 2nd edition. , 1981 .

[30]  T. L. Devine,et al.  Water vapor intake and body water (3HOH) clearance in the housemite Glycyphagus domesticus. , 1980, Acarologia.

[31]  L. Arlian,et al.  Water balance in insects and mites , 1979 .

[32]  E. Toolson Diffusion of water through the arthropopd cuticle: Thermodynamic consideration of the transition phenomenon , 1978 .

[33]  B. William Oxygen Consumption of the Terrestrial Mite Alaskozetes Antarcticus (Acari: Cryptostigmata) , 1977 .

[34]  L. Arlian,et al.  Water Balance in Drosophila pseudoobscura, and its Ecological Implications , 1975 .

[35]  L. Arlian,et al.  Kinetics of active and passive components of water exchange between the air and a mite, Dermatophagoides farinae. , 1974, Journal of insect physiology.

[36]  F. James Rohlf,et al.  Biometry: The Principles and Practice of Statistics in Biological Research , 1969 .

[37]  J. Gressitt Entomology of Antarctica , 1967 .

[38]  G. Wharton,et al.  Some Effects of Temperature and Relative Humidity on Water-Balance in Females of the Spiny Rat Mite, Echinolaelaps echidninus (Acarina: Laelaptidae)1 , 1962 .

[39]  P. Winston,et al.  Saturated Solutions For the Control of Humidity in Biological Research , 1960 .