A cavity-QED scheme for cluster-state quantum computing using crossed atomic beams

A quantum computer is a hypothetical device in which elements of quantum mechanics are used to introduce a degree of parallelism into computations, which could significantly improve on the computational speed of a classical computer at certain tasks. The ideas of cluster state quantum computing (introduced by Raussendorf and Briegel) extend quantum computing to systems that are capable of performing quantum gates, but are intrinsically one-way in their operation. Using the techniques of cluster state quantum computing, we show how a scalable quantum computer could potentially be constructed using microwave cavity quantum electrodynamics (QED). In a departure from the traditional understanding of a computer as a fixed array of computational elements, we show that cluster state quantum computing is actually well suited to atomic beam experiments and that an atomic beam quantum computer could be constructed using elements of microwave cavity QED. While existing experimental parameters do not meet current thresholds for fault-tolerant computing, improvements in both the experiments and in the understanding of fault-tolerance are expected to change this situation.

[1]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[2]  M. Nielsen,et al.  Noise thresholds for optical quantum computers. , 2005, Physical review letters.

[3]  B. Englert,et al.  Entangled atoms in Micromaser Physics , 1998 .

[4]  S Osnaghi,et al.  Coherent control of an atomic collision in a cavity. , 2001, Physical review letters.

[5]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[6]  H. Walther,et al.  The creation and detection of arbitrary photon number states using cavity QED , 2004 .

[7]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[8]  Dan E. Browne,et al.  Loss tolerant one-way quantum computation -- a horticultural approach , 2005 .

[9]  P. Bertet,et al.  Step-by-step engineered multiparticle entanglement , 2000, Science.

[10]  H. Walther,et al.  Preparing pure photon number states of the radiation field , 2000, Nature.

[11]  Liu Ye,et al.  Generation of entangled states in cavity QED , 2005 .

[12]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[13]  Manipulating ionization path in a Stark map: Stringent schemes for the selective field ionization in highly excited Rb Rydberg , 2002, physics/0204048.

[14]  H. Briegel,et al.  One-way Quantum Computation - a tutorial introduction , 2006, quant-ph/0603226.

[15]  Davidovich,et al.  Realization of a two-photon maser oscillator. , 1987, Physical review letters.

[16]  H. Walther,et al.  Generation of photon number states on demand via cavity quantum electrodynamics. , 2001, Physical review letters.

[17]  M. Paternostro,et al.  Quantum-information processing with noisy cluster states , 2005 .

[18]  Gilles Nogues,et al.  Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED , 1999 .

[19]  G. Milburn,et al.  Nonlinear quantum optical computing via measurement , 2004, quant-ph/0409198.

[20]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[21]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[22]  Jeremy Levy,et al.  Quantum-dot cluster-state computing with encoded qubits , 2005, quant-ph/0506032.

[23]  T. Spiller,et al.  An introduction to quantum information processing: applications and realizations , 2005 .

[24]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  Guo Guangcan,et al.  Erratum: Generation of entangled states in cavity QED [Phys. Rev. A 72, 034304 (2005)] , 2006 .

[26]  Jaeyoon Cho,et al.  Generation of atomic cluster states through the cavity input-output process. , 2005, Physical review letters.

[27]  J. Raimond,et al.  Generation of Einstein-Podolsky-Rosen Pairs of Atoms , 1997 .

[28]  R. Jozsa An introduction to measurement based quantum computation , 2005, quant-ph/0508124.

[29]  T. Spiller,et al.  Quantum computation by communication , 2005, quant-ph/0509202.

[30]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[31]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.

[32]  Christoph Becher,et al.  Control and Measurement of Three-Qubit Entangled States , 2004, Science.

[33]  J. Raimond,et al.  Seeing a single photon without destroying it , 1999, Nature.

[34]  Systematic observation of tunneling field-ionization in highly excited Rb Rydberg atoms , 2002, physics/0204038.

[35]  Y. Lim,et al.  Repeat-until-success linear optics distributed quantum computing. , 2005, Physical review letters.

[36]  J. Raimond,et al.  Quantum Memory with a Single Photon in a Cavity , 1997 .

[37]  Dwayne Henclewood,et al.  Novel rubidium atomic beam with an alkali dispenser source , 2004 .

[38]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[39]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[40]  D. Jaksch,et al.  Detection and characterization of multipartite entanglement in optical lattices , 2005, quant-ph/0506059.

[41]  Jiannis K Pachos,et al.  Quantum computation with a one-dimensional optical lattice. , 2003, Physical review letters.

[42]  Géza Tóth,et al.  Experimental analysis of a four-qubit photon cluster state. , 2005, Physical review letters.

[43]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[44]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[45]  Michael A. Nielsen,et al.  Quantum computation by measurement and quantum memory , 2003 .

[46]  W. Mathis,et al.  Schemes for generating the cluster states in microwave cavity QED (6 pages) , 2005 .

[47]  H. Briegel,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2004, Nature.

[48]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[49]  B. Englert,et al.  Preparing a GHZ state, or an EPR state, with the one-atom maser 1 Dedicated to Marlan Scully on the , 2000 .

[50]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[51]  Herbert Walther,et al.  Trapping States in the Micromaser , 1999 .