Cluster-based Analysis of Multi-Parameter Distributions in Cloud Simulation Ensembles

The proposed approach enables a comparative visual exploration of multi-parameter distributions in time-varying 3D ensemble simulations. To investigate whether dominant trends in such distributions occur, we consider the simulation elements in each dataset—per ensemble member and time step—as elements in the multi-dimensional parameter space, and use t-SNE to project these elements into 2D space. To find groups of elements with similar parameter values in each time step, the resulting projections are clustered via k-Means. Since elements with similar data values can be disconnected in one single projection, we compute an ensemble of projections using multiple t-SNE runs and use evidence accumulation to determine sets of elements that are stably clustered together. We build upon per-cluster multi-parameter distribution functions to quantify cluster similarity, and merge clusters in different ensemble members. By applying the proposed approach to a time-varying ensemble, the temporal development of clusters, and in particular their stability over time can be analyzed. We apply this approach to analyze a time-varying ensemble of 3D cloud simulations. The visualizations via t-SNE, parallel coordinate plots and scatter plot matrices show dependencies between the simulation results and the simulation parameters used to generate the ensemble, and they provide insight into the temporal ensemble variability regarding the major trends in the multi-parameter distributions.

[1]  Alexander Kumpf,et al.  Visual Analysis of the Temporal Evolution of Ensemble Forecast Sensitivities , 2019, IEEE Transactions on Visualization and Computer Graphics.

[2]  Ross T. Whitaker,et al.  Curve Boxplot: Generalization of Boxplot for Ensembles of Curves , 2014, IEEE Transactions on Visualization and Computer Graphics.

[3]  Alireza Entezari,et al.  Isosurface Visualization of Data with Nonparametric Models for Uncertainty , 2016, IEEE Transactions on Visualization and Computer Graphics.

[4]  Rüdiger Westermann,et al.  Streamline Variability Plots for Characterizing the Uncertainty in Vector Field Ensembles , 2016, IEEE Transactions on Visualization and Computer Graphics.

[5]  M. Cugmas,et al.  On comparing partitions , 2015 .

[6]  Dirk J. Lehmann,et al.  Optimal Sets of Projections of High-Dimensional Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[7]  Ana L. N. Fred,et al.  Combining multiple clusterings using evidence accumulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Han-Wei Shen,et al.  Uncertainty Visualization Using Copula-Based Analysis in Mixed Distribution Models , 2018, IEEE Transactions on Visualization and Computer Graphics.

[9]  David L. Kao,et al.  Visualizing spatial multivalue data , 2005, IEEE Computer Graphics and Applications.

[10]  B. Vogel,et al.  Using Emulators to Understand the Sensitivity of Deep Convective Clouds and Hail to Environmental Conditions , 2018, Journal of Advances in Modeling Earth Systems.

[11]  Stefan Bruckner,et al.  Result-Driven Exploration of Simulation Parameter Spaces for Visual Effects Design , 2010, IEEE Transactions on Visualization and Computer Graphics.

[12]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[13]  Rüdiger Westermann,et al.  Comparative visual analysis of vector field ensembles , 2015, 2015 IEEE Conference on Visual Analytics Science and Technology (VAST).

[14]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[15]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[16]  Han-Wei Shen,et al.  Statistical visualization and analysis of large data using a value-based spatial distribution , 2017, 2017 IEEE Pacific Visualization Symposium (PacificVis).

[17]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[18]  Tobias Schreck,et al.  Assisted Descriptor Selection Based on Visual Comparative Data Analysis , 2011, Comput. Graph. Forum.

[19]  Rüdiger Westermann,et al.  Visualizing the central tendency of ensembles of shapes , 2016, SIGGRAPH Asia Symposium on Visualization.

[20]  Valerio Pascucci,et al.  Gaussian mixture model based volume visualization , 2012, IEEE Symposium on Large Data Analysis and Visualization (LDAV).

[21]  Ross T. Whitaker,et al.  Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[22]  Kenneth I. Joy,et al.  Comparative Visual Analysis of Lagrangian Transport in CFD Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[23]  Elmar Eisemann,et al.  Hierarchical Stochastic Neighbor Embedding , 2016, Comput. Graph. Forum.

[24]  Dieter Schmalstieg,et al.  Comparative Analysis of Multidimensional, Quantitative Data , 2010, IEEE Transactions on Visualization and Computer Graphics.

[25]  Rüdiger Westermann,et al.  Multi-Charts for Comparative 3D Ensemble Visualization , 2014, IEEE Transactions on Visualization and Computer Graphics.

[26]  Han-Wei Shen,et al.  Distribution Driven Extraction and Tracking of Features for Time-varying Data Analysis , 2016, IEEE Transactions on Visualization and Computer Graphics.

[27]  Han-Wei Shen,et al.  CoDDA: A Flexible Copula-based Distribution Driven Analysis Framework for Large-Scale Multivariate Data , 2019, IEEE Transactions on Visualization and Computer Graphics.

[28]  Valerio Pascucci,et al.  Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.

[29]  Hans-Christian Hege,et al.  Nonparametric Models for Uncertainty Visualization , 2013, Comput. Graph. Forum.

[30]  Sandro Vega-Pons,et al.  A Survey of Clustering Ensemble Algorithms , 2011, Int. J. Pattern Recognit. Artif. Intell..

[31]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[32]  Rüdiger Westermann,et al.  Visual Analysis of Spatial Variability and Global Correlations in Ensembles of Iso‐Contours , 2016, Comput. Graph. Forum.

[33]  Alexander Kumpf,et al.  Visualizing Confidence in Cluster-Based Ensemble Weather Forecast Analyses , 2020, IEEE Transactions on Visualization and Computer Graphics.

[34]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[35]  Daniel A. Keim,et al.  Pattern Trails: Visual Analysis of Pattern Transitions in Subspaces , 2017, 2017 IEEE Conference on Visual Analytics Science and Technology (VAST).

[36]  Rüdiger Westermann,et al.  Time-Hierarchical Clustering and Visualization of Weather Forecast Ensembles , 2017, IEEE Transactions on Visualization and Computer Graphics.

[37]  Bernhard Preim,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Blood Flow Clustering and Applications in Virtual Stenting of Intracranial Aneurysms , 2022 .

[38]  Chris North,et al.  Towards a Systematic Combination of Dimension Reduction and Clustering in Visual Analytics , 2018, IEEE Transactions on Visualization and Computer Graphics.