Effect of local structure on electron paramagnetic resonance spectra for trigonal Cr(H(2)O)(6) (3+) coordination complex in the sulfate alums series: a ligand field theory study

A simple theoretical method is introduced for studying the interrelation between electronic and molecular structures. By diagonalizing the 120 × 120 complete energy matrices, the relationships between zero-field splitting (ZFS) parameter D and local distortion parameter Δθ for Cr3+ ions doped, separately, in α- and β- alums are investigated. Our results indicate that there exists an approximately linear relationship between D and Δθ in a temperature range 4.2–297 K and the signs of D and Δθ are opposite to each other. Moreover, in order to understand the contribution of spin-orbit coupling coefficient ζ to ZFS parameter D, the relation between D and Δ is also discussed.

[1]  Young Sun,et al.  Electron spin resonance study of the Ba-doping manganite Nd0.5Sr0.5MnO3 , 2008 .

[2]  K. Xiao-yu,et al.  Local lattice structure study of the octahedral (CrO6)9- clusters for Cr3+ ion doping in a variety of oxide crystals by simulating the corresponding EPR and optical spectra. , 2008, The journal of physical chemistry. A.

[3]  K. Xiao-yu,et al.  EPR theoretical study of hydrostatic pressure and temperature dependence of local lattice structure for [Mn(H2O)6]2+ octahedral complex in the Zn(BF4)2· 6H2O:Mn2+system , 2007 .

[4]  Lu Cheng,et al.  Theoretical investigation of electron paramagnetic resonance spectra and local structure distortion for Mn2+ ions in CaCO3:Mn2+ system: a simple model for Mn2+ ions in a trigonal ligand field. , 2007, The journal of physical chemistry. A.

[5]  Xiao-xuan Wu,et al.  Theoretical studies of the spin-Hamiltonian parameters and the effects of the temperature and pressure on the zero-field splitting for Ni2+ : Zn(BF4)2 · 6H2O crystal , 2007 .

[6]  Lu Cheng,et al.  Characterization of electronic transition energies and trigonal distortion of the (FeO6)9- coordination complex in the Al2O3:Fe3+ system: a simple method for transition-metal ions in a trigonal ligand field. , 2006, The journal of physical chemistry. A.

[7]  A. Ozarowski,et al.  Multi-frequency, high-field EPR as a powerful tool to accurately determine zero-field splitting in high-spin transition metal coordination complexes , 2006 .

[8]  Guo Jian-jun,et al.  Optical absorption and EPR study of the octahedral Fe3+ center in yttrium aluminum garnet , 2005 .

[9]  Li Feng-yan,et al.  ESR of dislocation defects in MgF2 crystals—with more than 130 line peaks , 2005 .

[10]  A. Barra,et al.  Anisotropic hyperfine interaction in the manganese(III) hexaaqua ion. , 2005, Angewandte Chemie.

[11]  G. McIntyre,et al.  Structure and bonding of the vanadium(III) hexa-aqua cation. 1. Experimental characterization and ligand-field analysis. , 2004, Inorganic chemistry.

[12]  M. Bolte,et al.  The ammonium chromium(III) alum NH4Cr(SO4)2·12H2O , 2004 .

[13]  A. Barra,et al.  High-field, multifrequency EPR study of the [Mn(OH2)6](3+) cation: influence of pi-bonding on the ground state zero-field-splitting parameters. , 2003, Inorganic chemistry.

[14]  A. Krupska,et al.  Influence of hydrostatic pressure on the zero-field splitting in NiSnCl6.6H2O , 2003 .

[15]  Li Zhao-min,et al.  New expressions for g-factors of the mixed ground state of 3d9 ions with a compressional tetragonal symmetry and its application to NaCl:Ni+(I) , 2002 .

[16]  V. Ivanovski,et al.  Vibrational spectra of hexaaqua complexes. X. Raman and IR studies of the sulfate group disorder in α-alums , 2001 .

[17]  J. Pilbrow,et al.  The study of the influence of Jahn-Teller coupling and low symmetry strain on the anomalous electron paramagnetic resonance spectrum of titanium(III) doped CsAl(SO4)2⋅12H2O , 2000 .

[18]  J. Steed,et al.  Structure of the alums. I. On the sulfate group disorder in the α-alums , 2000 .

[19]  Chick C. Wilson,et al.  Influence of the Mode of Water Coordination on the Electronic Structure of the [V(OH2)6]3+ Cation , 1999 .

[20]  J. Beattie,et al.  Structures and spectroscopy of hexaaquametal(III) ions , 1997 .

[21]  K. Knight,et al.  Cooperative Jahn-Teller Effect in Titanium Alum , 1997 .

[22]  A. Berry,et al.  Chromium luminescence as a probe of site effects in the alum lattice , 1997 .

[23]  Zhao-Min Li,et al.  Investigation of the trigonal-field splittings D and dependences on the local structural distortions for ZnSiF6·6H2O: Mn2+ (Ni2+) , 1996 .

[24]  J. Beattie,et al.  Alkali-metal vanadium sulfate β alums, MV(SO4)2·12H2O (M = K, Rb or Cs): structural anomalies related to unsymmetrical occupancy of the t2g(Oh) orbitals , 1996 .

[25]  Xiao-yu,et al.  Ground-state zero-field splitting for the Fe3+ ion in a cubic field. , 1987, Physical review. B, Condensed matter.

[26]  Xiao-yu Analysis of the electron paramagnetic resonance zero-field splitting for Fe3+ in sapphire. , 1987, Physical review. B, Condensed matter.

[27]  Zhao Min-guang,et al.  Erratum: d-orbital theory and high-pressure effects upon the EPR spectrum of ruby , 1983 .

[28]  R. Kesavamoorthy,et al.  Effect of Solid Dilution and Temperature on the Crystal Field Spectra of Chromium Ions in Single Crystals of Chrome Alum , 1981 .

[29]  J. Beattie,et al.  Structural studies on the caesium alums, CsMIII[SO4]2·12H2O , 1981 .

[30]  A. Leclerc,et al.  Electron spin resonance measurements of the spin Hamiltonian zero‐field splitting parameter D as a function of temperature for trigonally distorted Cr3+⋅6H2O magnetic complexes in families of hydrated crystals. I , 1975 .

[31]  D. Newman,et al.  Interpretation of S-state ion E.P.R. spectra , 1975 .

[32]  A. Abragam,et al.  Electron paramagnetic resonance of transition ions , 1970 .

[33]  I. M. Walker,et al.  Electronic Structure of Hexaquo Metal Ions. I. Chromium (III) , 1967 .

[34]  J. Griffith,et al.  The Theory of Transition-Metal Ions , 1962 .

[35]  H. Lipson The relation between the alum structures , 1935, Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences.