Uniqueness domains and non singular assembly mode changing trajectories

Parallel robots admit generally several solutions to the direct kinematics problem. The aspects are associated with the maximal singularity free domains without any singular configurations. Inside these regions, some trajectories are possible between two solutions of the direct kinematic problem without meeting any type of singularity: non-singular assembly mode trajectories. An established condition for such trajectories is to have cusp points inside the joint space that must be encircled. This paper presents an approach based on the notion of uniqueness domains to explain this behaviour.

[1]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[2]  P. Wenger,et al.  A new general formalism for the kinematic analysis of all nonredundant manipulators , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[3]  Damien Chablat,et al.  Séparation des Solutions aux Modèles Géométriques Direct et Inverse pour les Manipulateurs Pleinement Parallèles , 2001, ArXiv.

[4]  Marc Moreno Maza,et al.  On Solving Parametric Polynomial Systems , 2012, Mathematics in Computer Science.

[5]  Alain Liégeois,et al.  A study of multiple manipulator inverse kinematic solutions with applications to trajectory planning and workspace determination , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[6]  Par C. Sturm Mémoire sur la résolution des équations numériques , 2009 .

[7]  Clément Gosselin,et al.  Singularity analysis and representation of planar parallel manipulators , 1992, Robotics Auton. Syst..

[8]  Oscar Altuzarra,et al.  Defining Conditions for Nonsingular Transitions Between Assembly Modes , 2009, IEEE Transactions on Robotics.

[9]  Damien Chablat,et al.  Definition sets for the direct kinematics of parallel manipulators , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.

[10]  Damien Chablat,et al.  Working modes and aspects in fully parallel manipulators , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[11]  Andreas Seidl,et al.  Efficient projection orders for CAD , 2004, ISSAC '04.

[12]  C. Innocenti,et al.  Singularity-Free Evolution From One Configuration to Another in Serial and Fully-Parallel Manipulators , 1998 .

[13]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[14]  Philippe Wenger,et al.  Uniqueness domains and regions of feasible paths for cuspidal manipulators , 2004, IEEE Transactions on Robotics.

[15]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[16]  Damien Chablat,et al.  Non-Singular Assembly-mode Changing Motions for 3-RPR Parallel Manipulators , 2008, ArXiv.