New Similarity Measures between Polylines with Applications to Morphing and Polygon Sweeping

AbstractWe introduce two new related metrics, the geodesic width and the link width, for measuring the “distance” between two nonintersecting polylines in the plane. If the two polylines have n vertices in total, we present algorithms to compute the geodesic width of the two polylines in O(n2 log n) time using O(n2) space and the link width in O(n3 log n) time using O(n2) working space where n is the total number of edges of the polylines. Our computation of these metrics relies on two closely related combinatorial strutures: the shortest-path diagram and the link diagram of a simple polygon. The shortest-path (resp., link) diagram encodes the Euclidean (resp., link) shortest path distance between all pairs of points on the boundary of the polygon. We use these algorithms to solve two problems: Compute a continuous transformation that “morphs” one polyline into another polyline. Our morphing strategies ensure that each point on a polyline moves as little as necessary during the morphing, that every intermediate polyline is also simple and disjoint to any other intermediate polyline, and that no portion of the polylines to be morphed is stretched or compressed by more than a user-defined parameter during the entire morphing. We present an algorithm that computes the geodesic width of the two polylines and utilizes it to construct a corresponding morphing strategy in O(n2 log2n) time using O(n2) space. We also give an O(nlog n) time algorithm to compute a 2-approximation of the geodesic width and a corresponding morphing scheme.Locate a continuously moving target using a group of guards moving inside a simple polygon. The guards always determine a simple polygonal chain within the polygon, with consecutive guards along the chain being mutually visible. We compute a strategy that sweeps such a chain of guards through the polygon in order to locate a target. We compute in O(n3) time and O(n2) working space the minimum number r* of guards needed to sweep an n-vertex polygon. We also give an approximation algorithm, using O(n log n) time and O(n) space, to compute an integer r such that max(r - 16, 2) ≤ r* ≤ r and P can be swept with a chain of r guards.

[1]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Subhash Suri,et al.  On some link distance problems in a simple polygon , 1990, IEEE Trans. Robotics Autom..

[3]  Leonidas J. Guibas,et al.  Sweeping simple polygons with a chain of guards , 2000, SODA '00.

[4]  Rolf Klein,et al.  Moving Along a Street , 1991, Workshop on Computational Geometry.

[5]  Dinesh Manocha,et al.  Interactive surface decomposition for polyhedral morphing , 1999, The Visual Computer.

[6]  Craig Gotsman,et al.  Controllable morphing of compatible planar triangulations , 2001, TOGS.

[7]  Masafumi Yamashita,et al.  Searching for a mobile intruder in a corridor: the open edge variant of the polygon search problem , 1995, Int. J. Comput. Geom. Appl..

[8]  Esther M. Arkin,et al.  Logarithmic-time link path queries in a simple polygon , 1995, Int. J. Comput. Geom. Appl..

[9]  Christos H. Papadimitriou,et al.  The complexity of searching a graph , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[10]  Rolf Klein,et al.  The two guards problem , 1991, SCG '91.

[11]  Xuehou Tan Searching a Simple Polygon by a k-Searcher , 2000, ISAAC.

[12]  Masafumi Yamashita,et al.  Searching for a Mobile Intruder in a Polygonal Region , 1992, SIAM J. Comput..

[13]  Leonidas J. Guibas,et al.  Morphing Simple Polygons , 1994, SCG '94.

[14]  Jörg-Rüdiger Sack,et al.  An O(n log n) Algorithm for Computing a Link Center in a Simple Polygon , 1989, STACS.

[15]  Wayne E. Carlson,et al.  Shape transformation for polyhedral objects , 1992, SIGGRAPH.

[16]  Paul J. Heffernan,et al.  An optimal algorithm for the two-guard problem , 1993, SCG '93.

[17]  T. D. Parsons,et al.  Pursuit-evasion in a graph , 1978 .

[18]  Jarek Rossignac,et al.  Solid-interpolating deformations: Construction and animation of PIPs , 1991, Comput. Graph..

[19]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH 1999.

[20]  Yan Ke,et al.  An efficient algorithm for link-distance problems , 1989, SCG '89.

[21]  Leonidas J. Guibas,et al.  Morphing between polylines , 2001, SODA '01.

[22]  Daniel Cohen-Or,et al.  Three-dimensional distance field metamorphosis , 1998, TOGS.

[23]  Yan Ke Polygon visibility algorithms for weak visibility and link distance problems , 1990 .

[24]  Craig Gotsman,et al.  Guaranteed intersection-free polygon morphing , 2001, Comput. Graph..

[25]  Arie E. Kaufman,et al.  Wavelet-based volume morphing , 1994, Proceedings Visualization '94.

[26]  Subhash Suri,et al.  Morphing binary trees , 1995, SODA '95.

[27]  Peisheng Gao,et al.  2-D shape blending: an intrinsic solution to the vertex path problem , 1993, SIGGRAPH.

[28]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[29]  S. Suri Minimum link paths in polygons and related problems , 1987 .

[30]  Leonidas J. Guibas,et al.  Visibility-Based Pursuit-Evasion in a Polygonal Environment , 1997, WADS.

[31]  Leonidas J. Guibas,et al.  Finding an unpredictable target in a workspace with obstacles , 1997, Proceedings of International Conference on Robotics and Automation.

[32]  H. Hahn Bemerkungen zu den Untersuchungen des Herrn M. Fréchet: Sur quelques points du calcul fonctionnel , 1908 .

[33]  Boris Aronov,et al.  On Compatible Triangulations of Simple Polygons , 1993, Comput. Geom..

[34]  H. Hahn Sur quelques points du calcul fonctionnel , 1908 .

[35]  Craig Gotsman,et al.  Morphing stick figures using optimized compatible triangulations , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[36]  John F. Hughes,et al.  Scheduled Fourier volume morphing , 1992, SIGGRAPH.

[37]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[38]  Leonidas J. Guibas,et al.  Discrete Geometric Shapes: Matching, Interpolation, and Approximation , 2000, Handbook of Computational Geometry.

[39]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[40]  Kyung-Yong Chwa,et al.  Simple algorithms for searching a polygon with flashlights , 2002, Inf. Process. Lett..

[41]  Andrzej Lingas,et al.  AnO(n logn) algorithm for computing the link center of a simple polygon , 1992, Discret. Comput. Geom..

[42]  Noga Alon,et al.  Can visibility graphs Be represented compactly? , 1993, SCG '93.

[43]  D. T. Lee,et al.  Efficient Computation of the Geodesic Voronoi Diagram of Points in a Simple Polygon (Extended Abstract) , 1995, ESA.

[44]  Sergey Bereg An Optimal Morphing Between Polylines , 2002, Int. J. Comput. Geom. Appl..

[45]  Ari Rappoport,et al.  Shape blending using the star-skeleton representation , 1995, IEEE Computer Graphics and Applications.

[46]  Rephael Wenger,et al.  Constructing Piecewise Linear Homeomorphisms of Simple Polygons , 1997, J. Algorithms.

[47]  Thomas W. Sederberg,et al.  A physically based approach to 2–D shape blending , 1992, SIGGRAPH.

[48]  D. T. Lee,et al.  Two-Guard Walkability of Simple Polygons , 1998, Int. J. Comput. Geom. Appl..

[49]  Noga Alon,et al.  Can visibility graphs Be represented compactly? , 1994, Discret. Comput. Geom..