On the life and death of satellite haloes

We study the evolution of dark matter satellites orbiting inside more massive haloes using semi-analytical tools coupled with high-resolution N-body simulations. We select initial satellite sizes, masses, orbital energies, and eccentricities as predicted by hierarchical models of structure formation. Both the satellite (of initial mass M s , 0 ) and the main halo (of mass M h ) are described by a Navarro, Frenk & White density profile with various concentrations. We explore the interplay between dynamic friction and tidal mass loss/evaporation in determining the final fate of the satellite. We provide a user-friendly expression for the dynamic friction time-scale τ d f . l i v e and for the disruption time for a live (i.e. mass-losing) satellite. This can be easily implemented into existing semi-analytical models of galaxy formation improving considerably the way they describe the evolution of satellites. Massive satellites (M s , 0 > 0.1M h ) starting from typical cosmological orbits sink rapidly (irrespective of the initial circularity) toward the centre of the main halo where they merge after a time τ d f . r i g , as if they were rigid. Satellites of intermediate mass (0.01M h < M s , 0 < 0.1 M h ) suffer severe tidal mass losses as dynamic friction reduces their pericentre distance. In this case, mass loss increases substantially their decay time with respect to a rigid satellite. The final fate depends on the concentration of the satellite, c s , relative to that of the main halo, c h . Only in the unlikely case where c s /c h ≤ 1 are satellites disrupted. In this mass range, τ d f , l i v e gives a measure of the merging time. Among the satellites whose orbits decay significantly, those that survive must have been moving preferentially on more circular orbits since the beginning as dynamical friction does not induce circularization. Lighter satellites (M s , 0 < 0.01M h ) do not suffer significant orbital decay and tidal mass loss stabilizes the orbit even further. Their orbits should map those at the time of entrance into the main halo. After more than a Hubble time satellites have masses M s ∼ 1-10 per cent M s , 0 , typically, implying M s < 0.001 M h for the remnants. In a Milky-Way-like halo, light satellites should be present even after several orbital times with their baryonic components experimenting morphological changes due to tidal stirring. They coexist with the remnants of more massive satellites depleted in their dark matter content by the tidal field, which should move preferentially on tightly bound orbits.

[1]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[2]  J. Navarro,et al.  The Structural Evolution of Substructure , 2002, astro-ph/0203004.

[3]  J. Silk,et al.  The dynamical evolution of substructure , 2002, astro-ph/0204025.

[4]  J. Peñarrubia,et al.  Satellite decay in flattened dark matter haloes , 2002, astro-ph/0202250.

[5]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[6]  A. Helmi,et al.  The phase-space structure of a dark-matter halo , 2002, astro-ph/0201289.

[7]  Joachim Stadel,et al.  Tidal debris of dwarf spheroidals as a probe of structure formation models , 2001, astro-ph/0110386.

[8]  T. Quinn,et al.  Predicting the Number, Spatial Distribution, and Merging History of Dark Matter Halos , 2001, astro-ph/0109322.

[9]  T. Theuns,et al.  PINOCCHIO and the hierarchical build-up of dark matter haloes , 2001, astro-ph/0109324.

[10]  Fabio Governato,et al.  The Metamorphosis of Tidally Stirred Dwarf Galaxies , 2001, astro-ph/0103430.

[11]  M. Steinmetz,et al.  The Power Spectrum Dependence of Dark Matter Halo Concentrations , 2000, astro-ph/0012337.

[12]  G. Lake,et al.  Tidal Stirring and the Origin of Dwarf Spheroidals in the Local Group , 2000, astro-ph/0011041.

[13]  J. Makino,et al.  Structure of Dark Matter Halos from Hierarchical Clustering , 2000, astro-ph/0306203.

[14]  R. Ibata,et al.  Great Circle Tidal Streams: Evidence for a Nearly Spherical Massive Dark Halo around the Milky Way , 2000, astro-ph/0004011.

[15]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[16]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[17]  R. Swaters,et al.  Dwarf galaxy rotation curves and the core problem of dark matter haloes , 2000, astro-ph/0006048.

[18]  G. Lake,et al.  Density Profiles and Substructure of Dark Matter Halos: Converging Results at Ultra-High Numerical Resolution , 1999, astro-ph/9910166.

[19]  Y. Jing,et al.  The Density Profiles of the Dark Matter Halo Are Not Universal , 1999, The Astrophysical journal.

[20]  M. Steinmetz,et al.  The Core Density of Dark Matter Halos: A Critical Challenge to the ΛCDM Paradigm? , 1999, astro-ph/9908114.

[21]  D. Weinberg,et al.  The Effects of Gasdynamics, Cooling, Star Formation, and Numerical Resolution in Simulations of Cluster Formation , 1999, astro-ph/9907097.

[22]  Andreas Burkert,et al.  On the Formation of Boxy and Disky Elliptical Galaxies , 1999, astro-ph/9912489.

[23]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[24]  M. Colpi,et al.  Dynamical Friction and the Evolution of Satellites in Virialized Halos: The Theory of Linear Response , 1999, astro-ph/9907088.

[25]  J. Ostriker,et al.  On the Self-consistent Response of Stellar Systems to Gravitational Shocks , 1999, astro-ph/9902326.

[26]  F. Prada,et al.  Where are the missing galactic satellites? , 1999, astro-ph/9901240.

[27]  A. Helmi,et al.  Building up the stellar halo of the Galaxy , 1999, astro-ph/9901102.

[28]  G. Lake,et al.  Substructure in Dark Halos: Orbital Eccentricities and Dynamical Friction , 1998, astro-ph/9811229.

[29]  G. Lake,et al.  On the survival and destruction of spiral galaxies in clusters , 1998, astro-ph/9811127.

[30]  C. Baugh,et al.  Properties of galaxy clusters: mass and correlation functions , 1998, astro-ph/9810189.

[31]  S. White,et al.  Sinking satellites and the heating of galaxy discs , 1998, astro-ph/9809412.

[32]  Ravi K. ShethGerard Lemson Biasing and the distribution of dark matter haloes , 1998, astro-ph/9808138.

[33]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0 , 1998, astro-ph/9805283.

[34]  U. California,et al.  How to plant a merger tree , 1997, astro-ph/9711080.

[35]  J. Ostriker,et al.  Effects of Tidal Shocks on the Evolution of Globular Clusters , 1998, astro-ph/9806245.

[36]  L. Hernquist,et al.  Measuring mass-loss rates from Galactic satellites , 1998, astro-ph/9805291.

[37]  U. California,et al.  Semi-analytic modelling of galaxy formation: The local Universe , 1998, astro-ph/9802268.

[38]  G. Lake,et al.  Dark matter haloes within clusters , 1998, astro-ph/9801192.

[39]  D. Syer,et al.  Survival of substructure within dark matter haloes , 1997, astro-ph/9712222.

[40]  M. Colpi Accretion of a Satellite onto a Spherical Galaxy: Binary Evolution and Orbital Decay , 1997, astro-ph/9707348.

[41]  L. Hernquist,et al.  Tidal Shocking by Extended Mass Distributions , 1997, astro-ph/9709161.

[42]  M. Colpi,et al.  Drag on a Satellite Moving across a Spherical Galaxy: Tidal and Frictional Forces in Short-lived Encounters , 1997, astro-ph/9707347.

[43]  U. Bastian,et al.  The Hipparcos proper motion of the Magellanic Clouds , 1997 .

[44]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[45]  G. Tormen The rise and fall of satellites in galaxy clusters , 1996, astro-ph/9611078.

[46]  J. Ostriker,et al.  Destruction of the Galactic Globular Cluster System , 1996, astro-ph/9603042.

[47]  G. Lake,et al.  Galaxy harassment and the evolution of clusters of galaxies , 1995, Nature.

[48]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[49]  Jeremiah P. Ostriker,et al.  Dynamical Evolution of Globular Clusters , 1996 .

[50]  R. Carlberg,et al.  Sinking Satellites and Tilting Disk Galaxies , 1995, astro-ph/9511076.

[51]  M. Weinberg Production of Milky Way Structure by the Magellanic Clouds , 1995, astro-ph/9507071.

[52]  M. Weinberg ADIABATIC INVARIANTS IN STELLAR DYNAMICS .1. BASIC CONCEPTS , 1994, astro-ph/9404015.

[53]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[54]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[55]  M. Weinberg Self-gravitating response of a spherical galaxy to sinking satellites , 1989 .

[56]  L. Hernquist,et al.  Simulations of satellite orbital decay , 1989 .

[57]  J. Ostriker,et al.  On the Evolution of Globular Clusters , 1972 .

[58]  Subrahmanyan Chandrasekhar,et al.  Dynamical friction. I. General considerations: the coefficient of dynamical friction , 1943 .