Topology optimization for fluid flows using the MPS method incorporating the level set method

Abstract Topology optimization for fluid field problems has been studied for many years, but most of them use the Eulerian coordinate system in the numerical analysis methods such as the finite element method and the finite volume method. The moving particle semi-implicit (MPS) method is one of the particle methods, which can be used to analyze incompressible free surface fluid flows. The MPS method is a meshless method based on the Lagrangian coordinate system without surface tracking by a mesh or a scalar quantity. It has attracted attention in recent years since this has several advantages such as the easy expression of the free boundaries. This paper presents a new topology optimization method for fluid dynamics problems using the MPS method. First, the optimization problems are formulated based on the level set method and the MPS method. Next, the design sensitivities are derived using the Lagrange multiplier method and adjoint variable method. The optimization algorithm is constructed based on those formulations, and the validity and the availability of the proposed method are confirmed through several numerical examples.

[1]  Cetin Batur Dilgen,et al.  Topology Optimization of Turbulent Flows , 2018 .

[2]  Kohei Murotani,et al.  MPS–FEM PARTITIONED COUPLING APPROACH FOR FLUID–STRUCTURE INTERACTION WITH FREE SURFACE FLOW , 2014 .

[3]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[4]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[5]  S. Koshizuka,et al.  Application of Moving Particle Semi-implicit Method to Nuclear Reactor Safety , 2001 .

[6]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[7]  Cetin Batur Dilgen,et al.  Density based topology optimization of turbulent flow heat transfer systems , 2018 .

[8]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[9]  Xianbao Duan,et al.  Shape-topology optimization for Navier-Stokes problem using variational level set method , 2008 .

[10]  Ole Sigmund,et al.  Topology optimization of unsteady flow problems using the lattice Boltzmann method , 2016, J. Comput. Phys..

[11]  C. Othmer A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows , 2008 .

[12]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[13]  U. Rüde,et al.  Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming , 2005 .

[14]  Shigeo Wada,et al.  A particle method for blood flow simulation: application to flowing red blood cells and platelets , 2006 .

[15]  Ping Zhang,et al.  Topology optimization of unsteady incompressible Navier-Stokes flows , 2011, J. Comput. Phys..

[16]  Ping Zhang,et al.  Optimization of unsteady incompressible Navier–Stokes flows using variational level set method , 2013 .

[17]  James K. Guest,et al.  Topology optimization of creeping fluid flows using a Darcy–Stokes finite element , 2006 .

[18]  S. Osher,et al.  Level Set Methods for Optimization Problems Involving Geometry and Constraints I. Frequencies of a T , 2001 .

[19]  Xi Chen,et al.  Mechanism study of deformation and mass transfer for binary droplet collisions with particle method , 2009 .

[20]  Heiko Andrä,et al.  A new algorithm for topology optimization using a level-set method , 2006, J. Comput. Phys..

[21]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[22]  Yoshiaki Oka,et al.  Numerical analysis of fragmentation mechanisms in vapor explosions , 1999 .

[23]  Qing Li,et al.  A variational level set method for the topology optimization of steady-state Navier-Stokes flow , 2008, J. Comput. Phys..

[24]  James K. Guest,et al.  Level set topology optimization of fluids in Stokes flow , 2009 .

[25]  Yoshiaki Oka,et al.  Numerical analysis of boiling on high heat-flux and high subcooling condition using MPS-MAFL , 2002 .

[26]  Lingai Luo,et al.  Topology optimization of thermal fluid flows with an adjoint Lattice Boltzmann Method , 2018, J. Comput. Phys..

[27]  Yoshiaki Oka,et al.  A particle method for elastic and visco-plastic structures and fluid-structure interactions , 2001 .

[28]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[29]  Hitoshi Gotoh,et al.  LAGRANGIAN SIMULATION OF BREAKING WAVES USING PARTICLE METHOD , 1999 .

[30]  Masashi Kashiwagi,et al.  Numerical simulation of wave-induced nonlinear motions of a two-dimensional floating body by the moving particle semi-implicit method , 2008 .

[31]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[32]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[33]  S. Koshizuka,et al.  International Journal for Numerical Methods in Fluids Numerical Analysis of Breaking Waves Using the Moving Particle Semi-implicit Method , 2022 .

[34]  Katsuji Tanizawa,et al.  Three-dimensional numerical analysis of shipping water onto a moving ship using a particle method , 2009 .

[35]  L. H. Olesen,et al.  A high‐level programming‐language implementation of topology optimization applied to steady‐state Navier–Stokes flow , 2004, physics/0410086.

[36]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[37]  Seiichi Koshizuka,et al.  Numerical Simulation of Three-Dimensional Free-Surface Flows with Explicit Moving Particle Simulation Method , 2011 .

[38]  Changhong Hu,et al.  A coupled FDM–FEM method for free surface flow interaction with thin elastic plate , 2013 .

[39]  Hitoshi Gotoh,et al.  On particle-based simulation of a dam break over a wet bed , 2010 .

[40]  K. Maute,et al.  Levelset based fluid topology optimization using the extended finite element method , 2012 .

[41]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[42]  Nail K. Yamaleev,et al.  Local-in-time adjoint-based method for design optimization of unsteady flows , 2010, J. Comput. Phys..

[43]  Ken-ichi Tsubota,et al.  Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Hitoshi Gotoh,et al.  Lagrangian Particle Method for Simulation of Wave Overtopping on a Vertical Seawall , 2005 .

[45]  A. Cherkaev Variational Methods for Structural Optimization , 2000 .

[46]  Kazufumi Ito,et al.  Lagrange multiplier approach to variational problems and applications , 2008, Advances in design and control.

[47]  O. Scherzer,et al.  LETTER TO THE EDITOR: On the relation between constraint regularization, level sets, and shape optimization , 2006 .

[48]  Takayuki Yamada,et al.  Topology optimization in thermal-fluid flow using the lattice Boltzmann method , 2016, J. Comput. Phys..

[49]  J. Sethian,et al.  Structural Boundary Design via Level Set and Immersed Interface Methods , 2000 .

[50]  Takayuki Yamada,et al.  Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions , 2014, J. Comput. Phys..

[51]  Takayuki Yamada,et al.  A topology optimization method based on the level set method incorporating a fictitious interface energy , 2010 .

[52]  R. Errico What is an adjoint model , 1997 .

[53]  Hitoshi Gotoh,et al.  Key issues in the particle method for computation of wave breaking , 2006 .

[54]  Guang Xi,et al.  A numerical study of stir mixing of liquids with particle method , 2009 .

[55]  Yoshiaki Oka,et al.  Numerical computation of thermally controlled steam bubble condensation using Moving Particle Semi-implicit (MPS) method , 2010 .

[56]  G. Allaire,et al.  A level-set method for shape optimization , 2002 .

[57]  Hitoshi Gotoh,et al.  Turbulence particle models for tracking free surfaces , 2005 .

[58]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[59]  Yoshiaki Oka,et al.  Simulation of drop deposition process in annular mist flow using three-dimensional particle method , 2005 .

[60]  Xianbao Duan,et al.  Optimal shape control of fluid flow using variational level set method , 2008 .

[61]  Seiichi Koshizuka,et al.  Numerical analysis of shipping water impact on a deck using a particle method , 2007 .

[62]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[63]  Ole Sigmund,et al.  Topology optimization of large scale stokes flow problems , 2008 .

[64]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[65]  Takayuki Yamada,et al.  Topology Optimization Method Using Level Set Boundary Expressions in Navier Stokes Flow , 2012 .