Redefining the atom: atomic charge densities produced by an iterative stockholder approach.

A new, simple, computational technique allows molecular electron densities to be divided into atoms which have intuitively correct shapes and charges.

[1]  Patrick Bultinck,et al.  Critical analysis and extension of the Hirshfeld atoms in molecules. , 2007, The Journal of chemical physics.

[2]  P. Salvador,et al.  Overlap populations, bond orders and valences for fuzzy atoms , 2004 .

[3]  Anthony J Stone,et al.  Distributed Multipole Analysis:  Stability for Large Basis Sets. , 2005, Journal of chemical theory and computation.

[4]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[5]  R. Bader Atoms in molecules , 1990 .

[6]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[7]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[8]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[9]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[10]  F. Weinhold,et al.  Natural population analysis , 1985 .

[11]  R. Stewart V. One‐Electron Density Functions and Many‐Centered Finite Multipole Expansions , 1977 .

[12]  Richard J. Wheatley,et al.  Gaussian multipole functions for describing molecular charge distributions , 1993 .

[13]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .