Redefining the atom: atomic charge densities produced by an iterative stockholder approach.
暂无分享,去创建一个
R. Wheatley | Timothy C. Lillestolen | Richard J. Wheatley | T. C. Lillestolen | Timothy C. Lillestolen
[1] Patrick Bultinck,et al. Critical analysis and extension of the Hirshfeld atoms in molecules. , 2007, The Journal of chemical physics.
[2] P. Salvador,et al. Overlap populations, bond orders and valences for fuzzy atoms , 2004 .
[3] Anthony J Stone,et al. Distributed Multipole Analysis: Stability for Large Basis Sets. , 2005, Journal of chemical theory and computation.
[4] Mark S. Gordon,et al. Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .
[5] R. Bader. Atoms in molecules , 1990 .
[6] Anthony J. Stone,et al. Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .
[7] J. Pople,et al. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .
[8] R. S. Mulliken. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .
[9] M. Frisch,et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .
[10] F. Weinhold,et al. Natural population analysis , 1985 .
[11] R. Stewart. V. One‐Electron Density Functions and Many‐Centered Finite Multipole Expansions , 1977 .
[12] Richard J. Wheatley,et al. Gaussian multipole functions for describing molecular charge distributions , 1993 .
[13] F. L. Hirshfeld. Bonded-atom fragments for describing molecular charge densities , 1977 .