VPS35-deficiency results in an impaired AMPA receptor trafficking and decreased dendritic spine maturation

[1]  L. Mei,et al.  VPS35 Deficiency or Mutation Causes Dopaminergic Neuronal Loss by Impairing Mitochondrial Fusion and Function. , 2015, Cell reports.

[2]  L. Mei,et al.  VPS35 in Dopamine Neurons Is Required for Endosome-to-Golgi Retrieval of Lamp2a, a Receptor of Chaperone-Mediated Autophagy That Is Critical for α-Synuclein Degradation and Prevention of Pathogenesis of Parkinson's Disease , 2015, The Journal of Neuroscience.

[3]  M. Farrer,et al.  Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson's disease VPS35 mutation p.D620N. , 2015, Human molecular genetics.

[4]  P. Cullen,et al.  Retromer Binding to FAM21 and the WASH Complex Is Perturbed by the Parkinson Disease-Linked VPS35(D620N) Mutation , 2014, Current Biology.

[5]  D. Rubinsztein,et al.  Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy , 2014, Nature Communications.

[6]  R. Nicoll,et al.  Retromer Mediates a Discrete Route of Local Membrane Delivery to Dendrites , 2014, Neuron.

[7]  A. Gautreau,et al.  Retromer-mediated endosomal protein sorting: all WASHed up! , 2013, Trends in cell biology.

[8]  L. Mei,et al.  Vps35 loss promotes hyperresorptive osteoclastogenesis and osteoporosis via sustained RANKL signaling , 2013, The Journal of cell biology.

[9]  K. Marder,et al.  RAB7L1 Interacts with LRRK2 to Modify Intraneuronal Protein Sorting and Parkinson’s Disease Risk , 2013, Neuron.

[10]  M. Seaman The retromer complex – endosomal protein recycling and beyond , 2012, Journal of Cell Science.

[11]  L. Mei,et al.  VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1 , 2012, Biology Open.

[12]  L. Mei,et al.  Distinct Roles of Muscle and Motoneuron LRP 4 in Neuromuscular Junction Formation , 2012 .

[13]  E. Derivery,et al.  Actin Polymerization Controls the Organization of WASH Domains at the Surface of Endosomes , 2012, PloS one.

[14]  M. Seaman,et al.  Recruitment of the endosomal WASH complex is mediated by the extended 'tail' of Fam21 binding to the retromer protein Vps35. , 2012, The Biochemical journal.

[15]  L. Mei,et al.  VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology , 2011, The Journal of cell biology.

[16]  Marc N. Offman,et al.  A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. , 2011, American journal of human genetics.

[17]  M. Farrer,et al.  VPS35 mutations in Parkinson disease. , 2011, American journal of human genetics.

[18]  C. Hoogenraad,et al.  Dendritic Spine Plasticity: New Regulatory Roles of Dynamic Microtubules , 2010, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[19]  Benjamin E. L. Lauffer,et al.  Sequence-Dependent Sorting of Recycling Proteins by Actin-Stabilized Endosomal Microdomains , 2010, Cell.

[20]  T. Svitkina,et al.  Regulation of the Postsynaptic Cytoskeleton: Roles in Development, Plasticity, and Disorders , 2010, The Journal of Neuroscience.

[21]  L. Raymond,et al.  Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease , 2010, Trends in Neurosciences.

[22]  P. Verkade,et al.  SNX-BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting. , 2010, Seminars in cell & developmental biology.

[23]  D. Walsh,et al.  Alzheimer's disease: synaptic dysfunction and Aβ , 2009, Molecular Neurodegeneration.

[24]  D. Billadeau,et al.  A FAM21-containing WASH complex regulates retromer-dependent sorting. , 2009, Developmental cell.

[25]  Ling Lin,et al.  Axon guidance and synaptic maintenance: preclinical markers for neurodegenerative disease and therapeutics , 2009, Trends in Neurosciences.

[26]  L. Honig,et al.  Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Aβ accumulation , 2008, Proceedings of the National Academy of Sciences.

[27]  T. Soderling,et al.  Regulatory mechanisms of AMPA receptors in synaptic plasticity , 2007, Nature Reviews Neuroscience.

[28]  Yu-Qiang Ding,et al.  Myosin X regulates netrin receptors and functions in axonal path-finding , 2007, Nature Cell Biology.

[29]  Kristen M. Harris,et al.  Plasticity-Induced Growth of Dendritic Spines by Exocytic Trafficking from Recycling Endosomes , 2006, Neuron.

[30]  L. Honig,et al.  Model‐guided microarray implicates the retromer complex in Alzheimer's disease , 2005, Annals of neurology.

[31]  M. Seaman,et al.  Recycle your receptors with retromer. , 2005, Trends in cell biology.

[32]  Yu-Qiang Ding,et al.  Phosphatidylinositol transfer protein-alpha in netrin-1-induced PLC signalling and neurite outgrowth. , 2005, Nature cell biology.

[33]  G. Ming,et al.  Focal adhesion kinase in netrin-1 signaling , 2004, Nature Neuroscience.

[34]  Mikyoung Park,et al.  Recycling Endosomes Supply AMPA Receptors for LTP , 2004, Science.

[35]  R. Nicoll,et al.  AMPA Receptor Trafficking at Excitatory Synapses , 2003, Neuron.

[36]  Richard L. Huganir,et al.  Postsynaptic organisation and regulation of excitatory synapses , 2000, Nature Reviews Neuroscience.

[37]  M. Ehlers,et al.  Reinsertion or Degradation of AMPA Receptors Determined by Activity-Dependent Endocytic Sorting , 2000, Neuron.

[38]  K. Davis,et al.  Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. , 2000, JAMA.

[39]  S. Nakanishi Molecular diversity of glutamate receptors and implications for brain function. , 1992, Science.