Peptide microarray for high-throughput determination of phosphatase specificity and biology.

[1]  S. Wetzel,et al.  A microarray strategy for mapping the substrate specificity of protein tyrosine phosphatase. , 2007, Angewandte Chemie.

[2]  C. Niemeyer,et al.  Eine Mikroarray‐Strategie zur Untersuchung der Substratspezifitäten von Protein‐Tyrosin‐Phosphatasen , 2007 .

[3]  D. Pei,et al.  Substrate profiling of protein tyrosine phosphatase PTP1B by screening a combinatorial peptide library. , 2007, Journal of the American Chemical Society.

[4]  W. Hahn,et al.  PP2A Regulates BCL-2 Phosphorylation and Proteasome-mediated Degradation at the Endoplasmic Reticulum* , 2006, Journal of Biological Chemistry.

[5]  S. Chattopadhaya,et al.  Recent developments in microarray-based enzyme assays: from functional annotation to substrate/inhibitor fingerprinting , 2006, Analytical and bioanalytical chemistry.

[6]  K. Lam,et al.  Screening chemical microarrays: methods and applications. , 2006, Molecular bioSystems.

[7]  Etienne Waelkens,et al.  The Protein Phosphatase 2A Phosphatase Activator Is a Novel Peptidyl-Prolyl cis/trans-Isomerase* , 2006, Journal of Biological Chemistry.

[8]  Stephen W. Fesik,et al.  Promoting apoptosis as a strategy for cancer drug discovery , 2005, Nature Reviews Cancer.

[9]  H. Waldmann,et al.  Inhibitoren der Proteintyrosinphosphatasen: Kandidaten für zukünftige Wirkstoffe? , 2005 .

[10]  H. Waldmann,et al.  Inhibitors of protein tyrosine phosphatases: next-generation drugs? , 2005, Angewandte Chemie.

[11]  Joseph Heitman,et al.  Calcineurin: a central controller of signalling in eukaryotes , 2004, EMBO reports.

[12]  Gianni Cesareni,et al.  Probing Protein-tyrosine Phosphatase Substrate Specificity Using a Phosphotyrosine-containing Phage Library* , 2004, Journal of Biological Chemistry.

[13]  Tony Hunter,et al.  Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration , 2003, Nature.

[14]  Karen Martin,et al.  Quantitative analysis of protein phosphorylation status and protein kinase activity on microarrays using a novel fluorescent phosphorylation sensor dye , 2003, Proteomics.

[15]  R. Hooft van Huijsduijnen,et al.  Mapping of Synergistic Components of Weakly Interacting Protein-Protein Motifs Using Arrays of Paired Peptides* , 2003, The Journal of Biological Chemistry.

[16]  T. Hunter,et al.  The Protein Kinase Complement of the Human Genome , 2002, Science.

[17]  Dustin J Maly,et al.  Peptide microarrays for the determination of protease substrate specificity. , 2002, Journal of the American Chemical Society.

[18]  M. Lesaicherre,et al.  Antibody-based fluorescence detection of kinase activity on a peptide array. , 2002, Bioorganic & medicinal chemistry letters.

[19]  Michael A. Freitas,et al.  Screening combinatorial libraries by mass spectrometry. 2. Identification of optimal substrates of protein tyrosine phosphatase SHP-1. , 2002, Biochemistry.

[20]  Y. Liou,et al.  Pinning down proline-directed phosphorylation signaling. , 2002, Trends in cell biology.

[21]  M. Mrksich,et al.  Peptide chips for the quantitative evaluation of protein kinase activity , 2002, Nature Biotechnology.

[22]  M. Bollen,et al.  Combinatorial control of protein phosphatase-1. , 2001, Trends in biochemical sciences.

[23]  K. Lam,et al.  Peptide and small molecule microarray for high throughput cell adhesion and functional assays. , 2001, Bioconjugate chemistry.

[24]  J. Schneider-Mergener,et al.  Applications of peptide arrays prepared by the SPOT-technology. , 2001, Current opinion in biotechnology.

[25]  G Fischer,et al.  Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. , 2000, Molecular cell.

[26]  D. Lawrence,et al.  Assessment of Protein-tyrosine Phosphatase 1B Substrate Specificity Using “Inverse Alanine Scanning”* , 2000, The Journal of Biological Chemistry.

[27]  A. Yuryev,et al.  Mapping the subsite preferences of protein tyrosine phosphatase PTP-1B using combinatorial chemistry approaches. , 1998, Biochemistry.

[28]  T. Pawson,et al.  Signaling through scaffold, anchoring, and adaptor proteins. , 1997, Science.

[29]  R. Aebersold,et al.  Comparison of the specificity of bacterially expressed cytoplasmic protein-tyrosine phosphatases SHP and SH-PTP2 towards synthetic phosphopeptide substrates. , 1995, European journal of biochemistry.

[30]  L. Pinna,et al.  Phosphorylated synthetic peptides as tools for studying protein phosphatases. , 1994, Biochimica et biophysica acta.

[31]  J. Dixon,et al.  Protein tyrosine phosphatase substrate specificity: size and phosphotyrosine positioning requirements in peptide substrates. , 1994, Biochemistry.

[32]  J. C. Clemens,et al.  Expression, purification, crystallization, and biochemical characterization of a recombinant protein phosphatase. , 1993, The Journal of biological chemistry.

[33]  C. Walsh,et al.  Substrate specificities of catalytic fragments of protein tyrosine phosphatases (HPTPβ, LAR, and CD45) toward phosphotyrosylpeptide substrates and thiophosphotyrosylated peptides as inhibitors , 1993, Protein science : a publication of the Protein Society.

[34]  R. Hooft van Huijsduijnen,et al.  Applying the SPOT peptide synthesis procedure to the study of protein tyrosine phosphatase substrate specificity: probing for the heavenly match in vitro. , 2005, Methods.

[35]  J C Reed,et al.  Microtubule-targeting drugs induce bcl-2 phosphorylation and association with Pin1. , 2001, Neoplasia.

[36]  Masafumi Nakamura,et al.  Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC , 2001, Nature Cell Biology.

[37]  John C. Reed,et al.  Erratum: Microtubule-targeting drugs induce Bcl-2 phosphorylation and association with Pin1 (Neoplasia (2001) 3 (550-559) , 2001 .

[38]  C. Klee,et al.  Dephosphorylation of phosphopeptides by calcineurin (protein phosphatase 2B). , 1994, European journal of biochemistry.