Amorphous transparent conducting oxide for van-der Waals semiconductor bifacial transparent photovoltaics

[1]  F. Aslan,et al.  Preparation of high-quality SnS thin films for self-powered photodetectors and solar cells using a low-temperature powder technique , 2022, Optical Materials.

[2]  Joondong Kim,et al.  Van der Waals semiconductor embedded transparent photovoltaic for broadband optoelectronics , 2022, Surfaces and Interfaces.

[3]  Parikshit Sahatiya,et al.  Performance Enhancement of Highly Flexible SnS(p)/MoS2(n) Heterostructure based Broadband Photodetector by Piezo-phototronic Effect , 2022, FlatChem.

[4]  S. Rehman,et al.  Up-to-date literature review on Solar PV systems: Technology progress, market status and R&D , 2022, Journal of Cleaner Production.

[5]  R. Yang,et al.  Building-Integrated Photovoltaic (BIPV) products and systems: A review of energy-related behavior , 2022, Energy and Buildings.

[6]  L. Pei,et al.  Optimization of optical properties and durability performances of amorphous IZO transparent conductive films by preparing silicone coatings , 2022, Applied Surface Science.

[7]  G. Konstantatos,et al.  Highly Efficient, Ultrathin, Cd-Free Kesterite Solar Cells in Superstrate Configuration Enabled by Band Level Tuning via Ag Incorporation , 2021, Nano Energy.

[8]  Z. Weng,et al.  Recent progress of transparent conductive electrodes in the construction of efficient flexible organic solar cells , 2021, International Journal of Energy Research.

[9]  M. R. Fadavieslam,et al.  The effects of argon plasma treatment on ITO properties and the performance of OLED devices , 2021 .

[10]  Joondong Kim,et al.  Active energy-controlling windows incorporating transparent photovoltaics and an integrated transparent heater , 2021, Cell Reports Physical Science.

[11]  F. Teng,et al.  Enhanced response speed of TiO2 nanoarrays based all solid-state ultraviolet photodetector via SiO2 dielectric layer , 2021 .

[12]  J. Yi,et al.  Bifacial Color‐Tunable Transparent Photovoltaics for Application as Building‐Integrated Photovoltaics , 2021, Solar RRL.

[13]  K. S. Rahman,et al.  Recovery of FTO coated glass substrate via environment-friendly facile recycling perovskite solar cells , 2021, RSC advances.

[14]  Joondong Kim,et al.  Effect of TiO2 layer thickness of TiO2/NiO transparent photovoltaics , 2021, Progress in Photovoltaics: Research and Applications.

[15]  H. Shibata,et al.  SnS Homojunction Solar Cell with n‐Type Single Crystal and p‐Type Thin Film , 2021, Solar RRL.

[16]  Jaeyeong Heo,et al.  Achieving over 4% efficiency for SnS/CdS thin-film solar cells by improving the heterojunction interface quality , 2020, Journal of Materials Chemistry A.

[17]  W. Zhai,et al.  Structural Design and Pyroelectric Property of SnS/CdS Heterojunctions Contrived for Low‐Temperature Visible Photodetectors , 2020, Advanced Functional Materials.

[18]  A. Castellanos-Gómez,et al.  The role of traps in the photocurrent generation mechanism in thin InSe photodetectors , 2020, Materials Horizons.

[19]  SeJin Ahn,et al.  Solution-processed ZnxCd1-xS Buffer Layers for Vapor Transport Deposited SnS Thin-film Solar Cells: Achieving High Open-circuit Voltage. , 2019, ACS applied materials & interfaces.

[20]  M. Powalla,et al.  Sputtered Transparent Electrodes (IO:H and IZO) with Low Parasitic Near-Infrared Absorption for Perovskite–Cu(In,Ga)Se2 Tandem Solar Cells , 2019, ACS Applied Energy Materials.

[21]  Miles C. Barr,et al.  How to Accurately Report Transparent Solar Cells , 2019, Joule.

[22]  Mukesh Kumar,et al.  High performance, flexible and room temperature grown amorphous Ga2O3 solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes , 2019, Journal of Physics D: Applied Physics.

[23]  R. Gordon,et al.  Atomic layer deposition of energy band tunable tin germanium oxide electron transport layer for the SnS-based solar cells with 400 mV open-circuit voltage , 2019, Applied Physics Letters.

[24]  Janne Halme,et al.  Theoretical efficiency limits of ideal coloured opaque photovoltaics , 2019, Energy & Environmental Science.

[25]  Mukesh Kumar,et al.  Role of oxygen and boron to control the duality behavior and thermal stability in Boron doped amorphous indium-zinc-oxide thin films , 2019, Semiconductor Science and Technology.

[26]  H. Ye,et al.  Transparent Conductive Oxides and Their Applications in Near Infrared Plasmonics , 2019, physica status solidi (a).

[27]  M. Ovhal,et al.  Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review , 2019, Journal of Materials Chemistry C.

[28]  M. Higashiwaki,et al.  Modeling and interpretation of UV and blue luminescence intensity in β-Ga2O3 by silicon and nitrogen doping , 2018, Journal of Applied Physics.

[29]  Joondong Kim,et al.  Growth of Large‐Area SnS Films with Oriented 2D SnS Layers for Energy‐Efficient Broadband Optoelectronics , 2018, Advanced Functional Materials.

[30]  A. Arulanantham,et al.  Solution volume effect on structural, optical and photovoltaic properties of nebulizer spray deposited SnS thin films , 2018, Journal of Materials Science: Materials in Electronics.

[31]  C. Jeon,et al.  Kinetically Controlled Growth of Phase‐Pure SnS Absorbers for Thin Film Solar Cells: Achieving Efficiency Near 3% with Long‐Term Stability Using an SnS/CdS Heterojunction , 2018 .

[32]  S. Yin,et al.  TiO2 Nanorod Arrays Based Self-Powered UV Photodetector: Heterojunction with NiO Nanoflakes and Enhanced UV Photoresponse. , 2018, ACS applied materials & interfaces.

[33]  D. Duong,et al.  van der Waals Layered Materials: Opportunities and Challenges. , 2017, ACS nano.

[34]  Artur R. Davoyan,et al.  Van der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook , 2017, 1710.08917.

[35]  Richard R. Lunt,et al.  Emergence of highly transparent photovoltaics for distributed applications , 2017 .

[36]  E. Płaczek-Popko,et al.  Top PV market solar cells 2016 , 2017 .

[37]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[38]  Kulwinder Kaur,et al.  Strategic review of interface carrier recombination in earth abundant Cu–Zn–Sn–S–Se solar cells: current challenges and future prospects , 2017 .

[39]  C. Packard,et al.  Design of low surface roughness-low residual stress-high optoelectronic merit a-IZO thin films for flexible OLEDs , 2016 .

[40]  Seok‐In Na,et al.  Work function and interface control of amorphous IZO electrodes by MoO3 layer grading for organic solar cells , 2015 .

[41]  Tonio Buonassisi,et al.  Co‐optimization of SnS absorber and Zn(O,S) buffer materials for improved solar cells , 2015 .

[42]  E. Kaxiras,et al.  First principles study of point defects in SnS. , 2014, Physical chemistry chemical physics : PCCP.

[43]  Jeremy R. Poindexter,et al.  3.88% Efficient Tin Sulfide Solar Cells using Congruent Thermal Evaporation , 2014, Advanced materials.

[44]  Sang Woon Lee,et al.  Overcoming Efficiency Limitations of SnS‐Based Solar Cells , 2014 .

[45]  B. Choi,et al.  Effects of surface treatment of ITO anode layer patterned with shadow mask technology on characteristics of organic light-emitting diodes , 2013 .

[46]  Jr-Hau He,et al.  Few-Layer MoS2 with high broadband Photogain and fast optical switching for use in harsh environments. , 2013, ACS nano.

[47]  K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes , 2012, Nature Photonics.

[48]  D. W. Readey,et al.  The Remarkable Thermal Stability of Amorphous In‐Zn‐O Transparent Conductors , 2008 .

[49]  John D. Perkins,et al.  Titanium-doped indium oxide: A high-mobility transparent conductor , 2005 .

[50]  Gao Liu,et al.  Dark spot formation relative to ITO surface roughness for polyfluorene devices , 2004 .

[51]  Y. Tak,et al.  Criteria for ITO (indium tin-oxide) thin film as the bottom electrode of an organic light emitting diode , 2002 .

[52]  Andreas Elschner,et al.  Surface roughness effects and their influence on the degradation of organic light emitting devices , 2000 .

[53]  U. Rau,et al.  > 85% Indium Reduction for High-Efficiency Silicon Heterojunction Solar Cells with Aluminum-Doped Zinc Oxide Contacts , 2022, SSRN Electronic Journal.