Compact planar microstripline branch-line and rat-race couplers

Both branch-line and rat-race couplers are easily realized using planar circuit technology as they employ only transmission lines without additional components. However, as the electrical lengths of the transmission line elements are either 90/spl deg/ or 270/spl deg/, such couplers consume a significant amount of circuit area. This paper shows the development of branch-line and rat-race couplers that use artificial transmission lines (ATLs) in place of conventional transmission lines resulting in significant size reduction. As the ATLs are constructed entirely from microstriplines, the couplers are easily fabricated using conventional printed-circuit processes. The design formulas developed for the ATLs are explicit. Full-wave simulation and experimental results were used to confirm the design approach for hybrids operating at 1.8 GHz. The frequency response of the proposed hybrids is similar to conventional hybrids.

[1]  C. G. Montgomery,et al.  Principles of Microwave Circuits , 1965 .

[2]  Quan Xue,et al.  Novel 1-D microstrip PBG cells , 2000 .

[3]  Inder J. Bahl,et al.  Microwave Solid State Circuit Design , 1988 .

[4]  E. G. Cristal Meander-Line and Hybrid Meander-Line Transformers , 1972 .

[5]  Masahiro Muraguchi,et al.  Reduced-size branch-line and rat-race hybrids for uniplanar MMIC's , 1990 .

[6]  Yi-Chyun Chiang,et al.  Design of a wide-band lumped-element 3-dB quadrature coupler , 2001 .

[7]  P. Alinikula,et al.  Monolithic Artificial Transmission Line Balanced Frequency Doublers , 1997, 1997 27th European Microwave Conference.

[8]  Tsuneo Tokumitsu,et al.  Multilayer MMIC branch-line coupler and broad-side coupler , 1992, IEEE 1992 Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest of Papers.

[9]  R. Collin Foundations for microwave engineering , 1966 .

[10]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[11]  P. Russer,et al.  Microwave circuits , 1998, 1998 URSI International Symposium on Signals, Systems, and Electronics. Conference Proceedings (Cat. No.98EX167).

[12]  Matthew Mandl Solid-state circuit design users' manual , 1977 .

[13]  T. Kawai,et al.  Broadband lumped-element 180-degree hybrids utilizing lattice circuits , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[14]  J. Lange Interdigitated Stripline Quadrature Hybrid (Correspondence) , 1969 .

[15]  R. Chadha,et al.  Compensation of Discontinuities in Planar Trainsmission Lines , 1982, 1982 IEEE MTT-S International Microwave Symposium Digest.

[16]  Sang-Won Yun,et al.  Miniaturized 3-dB ring hybrid terminated by arbitrary impedances , 1994 .

[17]  Veikko Porra,et al.  Miniaturized artificial-transmission-line monolithic millimeter-wave frequency doubler , 2000 .

[18]  Youngwoo Kwon,et al.  Compact low-loss monolithic CPW filters using air-gap overlay structures , 2001, IEEE Microwave and Wireless Components Letters.

[19]  G. Ponchak,et al.  Miniaturized Wilkinson power dividers utilizing capacitive loading , 2002, IEEE Microwave and Wireless Components Letters.

[20]  Michael J. Lancaster,et al.  Capacitively loaded microstrip loop resonator , 1994 .

[21]  D. Pozar Microwave Engineering , 1990 .

[22]  H. Ogawa,et al.  A branchline hybrid, using valley microstrip lines , 1992, IEEE Microwave and Guided Wave Letters.

[23]  Adnan Görür,et al.  Characteristics of periodically loaded CPW structures , 1998 .

[24]  K. C. Gupta,et al.  Compensation of Discontinuities in Planar Transmission Lines , 1982 .

[25]  C. S. Aitchison,et al.  Wide-band lumped-element quadrature 3-dB couplers in microstrip , 2000 .

[26]  Quan Xue,et al.  A novel microstrip ring hybrid incorporating a PBG cell , 2001, IEEE Microwave and Wireless Components Letters.

[27]  Y. Yagi,et al.  Miniaturized 90 degree hybrid coupler using high dielectric substrate for QPSK modulator , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[28]  Stephen A. Maas,et al.  Nonlinear microwave circuits , 1988 .

[29]  W.A. Tyrrell,et al.  Hybrid Circuits for Microwaves , 1947, Proceedings of the IRE.

[30]  Franco Giannini,et al.  A double frequency 180° lumped‐element hybrid , 2002 .

[31]  R. Stephenson A and V , 1962, The British journal of ophthalmology.