Drug permeation in biomembranes: in vitro and in silico prediction and influence of physicochemical properties.

In the past decades, it has become increasingly apparent that in addition to therapeutic effect, drugs need to exhibit favourable absorption, distribution, metabolism and excretion (ADME) characteristics to produce a desirable response in vivo. As the recent progress in drug discovery technology enables rapid synthesis of vast numbers of potential drug candidates, robust methods are required for the effective screening of compounds synthesized within such programs, so that compounds with poor pharmacokinetic properties can be rejected at an early stage of drug development. Furthermore, a viable in silico method would save resources by enabling virtual screening of drug candidates already prior to synthesis. This review gives a general overview of the approaches aimed at predicting biological permeation, one of the cornerstones behind the ADME behaviour of drugs. The most important experimental and computational models are reviewed. Physicochemical factors underlying the permeation process are discussed.

[1]  S H White,et al.  The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. , 1989, Biochemistry.

[2]  Transfer Mechanism and Lipophilicity of Ionizable Drugs , 2001 .

[3]  S. Walker,et al.  Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964-1985). , 1988, British journal of clinical pharmacology.

[4]  Ulf Norinder,et al.  Prediction of Polar Surface Area and Drug Transport Processes Using Simple Parameters and PLS Statistics , 2000, J. Chem. Inf. Comput. Sci..

[5]  Patrick Gaillard,et al.  Molecular Lipophilicity Potential, a tool in 3D QSAR: Method and applications , 1994, J. Comput. Aided Mol. Des..

[6]  M. Abraham,et al.  The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography , 1987 .

[7]  P. Carrupt,et al.  Immobilized artificial membrane liquid chromatography: proposed guidelines for technical optimization of retention measurements. , 2002, Journal of chromatography. A.

[8]  H. van de Waterbeemd,et al.  Property-based design: optimization of drug absorption and pharmacokinetics. , 2001, Journal of medicinal chemistry.

[9]  Kin-Kai Hwang,et al.  A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential. , 2002, European journal of medicinal chemistry.

[10]  Lemont B. Kier,et al.  Electrotopological State Indices for Atom Types: A Novel Combination of Electronic, Topological, and Valence State Information , 1995, J. Chem. Inf. Comput. Sci..

[11]  U Norinder,et al.  Theoretical calculation and prediction of intestinal absorption of drugs in humans using MolSurf parametrization and PLS statistics. , 1999, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[12]  P. Vanýsek Charge transfer processes on liquid/liquid interfaces : the first century , 1995 .

[13]  M. Bally,et al.  Uptake of dibucaine into large unilamellar vesicles in response to a membrane potential. , 1985, The Journal of biological chemistry.

[14]  D Mackay,et al.  A novel method for measuring membrane-water partition coefficients of hydrophobic organic chemicals: comparison with 1-octanol-water partitioning. , 1988, Journal of pharmaceutical sciences.

[15]  S. Krämer,et al.  Absorption prediction from physicochemical parameters. , 1999, Pharmaceutical science & technology today.

[16]  K. Schulten,et al.  Molecular Dynamic Simulation of Immobilized Artificial Membranes , 1995 .

[17]  D. T. Stanton,et al.  Profiling of Drugs for Membrane Activity Using Liposomes as an In Vitro Model System , 2002, Drug development and industrial pharmacy.

[18]  G. Cevc The molecular mechanism of interaction between monovalent ions and polar surfaces, such as lipid bilayer membranes , 1990 .

[19]  Per Artursson,et al.  An Improved Cell Culture Model Based on 2/4/A1 Cell Monolayers for Studies of Intestinal Drug Transport: Characterization of Transport Routes , 2003, Pharmaceutical Research.

[20]  S. Weir,et al.  Fundamental studies in reversed-phase liquid-solid extraction of basic drugs; I: Ionic interactions. , 1992, Journal of pharmaceutical and biomedical analysis.

[21]  Bernard Testa,et al.  Lipophilicity in Molecular Modeling , 1996, Pharmaceutical Research.

[22]  K. Kontturi,et al.  Membrane activity of ionisable drugs - a task for liquid-liquid electrochemistry? , 2003 .

[23]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings , 1997 .

[24]  K. Kontturi,et al.  Langmuir−Blodgett Monolayers at a Liquid−Liquid Interface , 2000 .

[25]  A. Watt,et al.  An Increased Throughput Method for the Determination of Partition Coefficients , 2000, Pharmaceutical Research.

[26]  M. Strafford,et al.  Drug absorption in vitro model: filter-immobilized artificial membranes. 2. Studies of the permeability properties of lactones in Piper methysticum Forst. , 2001, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[27]  U. Zimmermann,et al.  Effect of fluorine substitution on the interaction of lipophilic ions with the plasma membrane of mammalian cells. , 2000, Biophysical journal.

[28]  Alan J. Parker,et al.  Protic-dipolar aprotic solvent effects on rates of bimolecular reactions , 1969 .

[29]  W. R. Lieb,et al.  Molecular organization of liquid n-octanol: an X-ray diffraction analysis. , 1993, Journal of pharmaceutical sciences.

[30]  M. Karelson,et al.  Quantum-Chemical Descriptors in QSAR/QSPR Studies. , 1996, Chemical reviews.

[31]  W. Surewicz,et al.  Interaction of propranolol with model phospholipid membranes. Monolayer, spin label and fluorescent spectroscopy studies. , 1981, Biochimica et biophysica acta.

[32]  P. Carrupt,et al.  Molecular Factors Influencing Retention on Immobilized Artificial Membranes (IAM) Compared to Partitioning in Liposomes and n-Octanol , 2002, Pharmaceutical Research.

[33]  B. Müller,et al.  Determination of liposome partitioning of ionizable drugs by titration. , 1999, Journal of pharmaceutical sciences.

[34]  H. Girault,et al.  Theoretical and Experimental Exploration of the Lipophilicity of Zwitterionic Drugs in the 1,2-Dichloroethane/Water System , 2002, Pharmaceutical Research.

[35]  Sean Ekins,et al.  Three-Dimensional Quantitative Structure-Permeability Relationship Analysis for a Series of Inhibitors of Rhinovirus Replication , 2001, J. Chem. Inf. Comput. Sci..

[36]  H. Girault,et al.  Ionic Partition Diagram of the Zwitterionic Antihistamine Cetirizine , 2001 .

[37]  E. Toropainen,et al.  Paracellular and passive transcellular permeability in immortalized human corneal epithelial cell culture model. , 2003, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[38]  Electrochemistry at the interface between two immiscible electrolyte solutions , 1991 .

[39]  G. Roberts,et al.  Langmuir-Blodgett films , 1984 .

[40]  J. Taskinen,et al.  Relationship between immobilised artificial membrane chromatographic retention and the brain penetration of structurally diverse drugs. , 1997, Journal of pharmaceutical and biomedical analysis.

[41]  K. Takács-Novák,et al.  Ion-Pair Partition of Quaternary Ammonium Drugs: The Influence of Counter Ions of Different Lipophilicity, Size, and Flexibility , 1999, Pharmaceutical Research.

[42]  G Beck,et al.  Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. , 2001, Journal of pharmaceutical sciences.

[43]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[44]  Peter C. Jurs,et al.  Prediction of Human Intestinal Absorption of Drug Compounds from Molecular Structure , 1998, J. Chem. Inf. Comput. Sci..

[45]  O. H. Chan,et al.  Use of immobilized artificial membrane chromatography for drug transport applications. , 1998, Journal of pharmaceutical sciences.

[46]  H Lennernäs,et al.  SPR biosensor studies of the direct interaction between 27 drugs and a liposome surface: correlation with fraction absorbed in humans. , 2000, Journal of medicinal chemistry.

[47]  S. Krämer,et al.  Towards the Predictability of Drug-Lipid Membrane Interactions: The pH-Dependent Affinity of Propranolol to Phosphatidylinositol Containing Liposomes , 1998, Pharmaceutical Research.

[48]  Toshio Fujita,et al.  The Correlation of Biological Activity of Plant Growth Regulators and Chloromycetin Derivatives with Hammett Constants and Partition Coefficients , 1963 .

[49]  Harpreet S. Chadha,et al.  Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain. , 1994, Journal of pharmaceutical sciences.

[50]  A. Avdeef,et al.  pH-Metric logP 10. Determination of Liposomal Membrane-Water Partition Coefficients of lonizable Drugs , 1998, Pharmaceutical Research.

[51]  Kristina Luthman,et al.  Caco-2 monolayers in experimental and theoretical predictions of drug transport1PII of original article: S0169-409X(96)00415-2. The article was originally published in Advanced Drug Delivery Reviews 22 (1996) 67–84.1 , 2001 .

[52]  Lemont B. Kier,et al.  Modeling Blood-Brain Barrier Partitioning Using the Electrotopological State , 2002, J. Chem. Inf. Comput. Sci..

[53]  Anders Karlén,et al.  Hydrogen bonding descriptors in the prediction of human in vivo intestinal permeability. , 2003, Journal of molecular graphics & modelling.

[54]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[55]  L. Molnár,et al.  Recent advances in the prediction of blood-brain partitioning from molecular structure. , 2003, Journal of pharmaceutical sciences.

[56]  H. Brockman,et al.  Dipole potential of lipid membranes. , 1994, Chemistry and physics of lipids.

[57]  A. Leo Evaluating hydrogen-bond donor strength. , 2000, Journal of pharmaceutical sciences.

[58]  L. Hall,et al.  Molecular Structure Description: The Electrotopological State , 1999 .

[59]  C. Maggi,et al.  Simultaneous LC-MS/MS determination of reference pharmaceuticals as a method for the characterization of the Caco-2 cell monolayer absorption properties. , 2002, Analytical chemistry.

[60]  H. Girault,et al.  Transfer Mechanism of Ionic Drugs: Piroxicam as an agent facilitating proton transfer , 1996 .

[61]  H. Girault,et al.  Physicochemical Characterization of Sildenafil: Ionization, Lipophilicity Behavior, and Ionic-Partition Diagram Studied by Two-Phase Titration and Electrochemistry , 2000 .

[62]  A. Eckert,et al.  Solid-supported lipid membranes as a tool for determination of membrane affinity: high-throughput screening of a physicochemical parameter. , 2001, Journal of pharmaceutical sciences.

[63]  George R. Famini,et al.  Using theoretical descriptors in quantitative structure-activity relationships: some toxicological indices. , 1991, Journal of medicinal chemistry.

[64]  Bernard Testa,et al.  Intermolecular Forces Expressed in 1,2-Dichloroethane/Water Partition Coefficients: A Solvatochromic Analysis , 1997 .

[65]  A. Avdeef,et al.  pH-metric log P. II: Refinement of partition coefficients and ionization constants of multiprotic substances. , 1993, Journal of pharmaceutical sciences.

[66]  H. Girault,et al.  Ionic partition diagrams of ionisable drugs : pH-lipophilicity profiles, transfer mechanisms and charge effects on solvation , 1999 .

[67]  K. Luthman,et al.  Effect of molecular charge on intestinal epithelial drug transport: pH-dependent transport of cationic drugs. , 1999, The Journal of pharmacology and experimental therapeutics.

[68]  David J. Begley,et al.  Potential of Immobilized Artificial Membranes for Predicting Drug Penetration Across the Blood−Brain Barrier , 1998, Pharmaceutical Research.

[69]  F. Quaglia,et al.  Interactions between Amines and Phospholipids: A Chromatographic Study on Immobilized Artificial Membrane (IAM) Stationary Phases at Various pH Values , 2000 .

[70]  Denis M. Bayada,et al.  Polar Molecular Surface as a Dominating Determinant for Oral Absorption and Brain Penetration of Drugs , 1999, Pharmaceutical Research.

[71]  K. Hideg,et al.  Interfacial ionization and partitioning of membrane-bound local anesthetics. , 1992, Biochimica et biophysica acta.

[72]  D. Scherman,et al.  High lipophilicity decreases drug transport across intestinal epithelial cells. , 1994, The Journal of pharmacology and experimental therapeutics.

[73]  C. Pidgeon,et al.  Chromatographic surfaces prepared from lyso phosphatidylcholine ligands , 1994 .

[74]  A. Pohorille,et al.  Mechanism of unassisted ion transport across membrane bilayers. , 1996, Journal of the American Chemical Society.

[75]  P. Carrupt,et al.  Structural Properties Governing Retention Mechanisms on RP-HPLC Stationary Phases Used for Lipophilicity Measurements , 1995 .

[76]  Bernard Testa,et al.  Lipophilicity Profiles of Ampholytes. , 1997, Chemical reviews.

[77]  J. Seelig,et al.  Peptide binding to lipid bilayers. Nonclassical hydrophobic effect and membrane-induced pK shifts. , 1992, Biochemistry.

[78]  H Lennernäs,et al.  Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. , 1998, Journal of medicinal chemistry.

[79]  M. Kansy,et al.  Hydrogen-Bonding Capacity and Brain Penetration , 1992, Chimia (Basel).

[80]  R Griffiths,et al.  Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. , 1988, Journal of medicinal chemistry.

[81]  U. Norinder,et al.  Computational approaches to the prediction of the blood-brain distribution. , 2002, Advanced drug delivery reviews.

[82]  U Norinder,et al.  Theoretical calculation and prediction of drug transport processes using simple parameters and partial least squares projections to latent structures (PLS) statistics. The use of electrotopological state indices. , 2001, Journal of pharmaceutical sciences.

[83]  Transfer Mechanisms and Lipophilicity of Ionizable Drugs , 2001 .

[84]  Shaomeng Wang,et al.  Computer Automated log P Calculations Based on an Extended Group Contribution Approach , 1994, J. Chem. Inf. Comput. Sci..

[85]  Z. Samec,et al.  Polarization phenomena at the water | o-nitrophenyl octyl ether interface. Part 1. Evaluation of the standard Gibbs energies of ion transfer from the solubility and voltammetric measurements , 1996 .

[86]  B Testa,et al.  Predicting blood-brain barrier permeation from three-dimensional molecular structure. , 2000, Journal of medicinal chemistry.

[87]  Michael C. Petty,et al.  Langmuir-Blodgett films: Interaction of electromagnetic radiation with organic thin films , 1996 .

[88]  Shiyin Yee,et al.  In Vitro Permeability Across Caco-2 Cells (Colonic) Can Predict In Vivo (Small Intestinal) Absorption in Man—Fact or Myth , 1997, Pharmaceutical Research.

[89]  S. Hirono,et al.  Simple Method of Calculating Octanol/Water Partition Coefficient. , 1992 .

[90]  G. Caldwell,et al.  Evaluation of the immobilized artificial membrane phosphatidylcholine. Drug discovery column for high-performance liquid chromatographic screening of drug-membrane interactions. , 1998, Journal of chromatography. A.

[91]  E. Krause,et al.  Noncovalent immobilized artificial membrane chromatography, an improved method for describing peptide-lipid bilayer interactions. , 1999, Journal of chromatography. A.

[92]  M. L. La Rotonda,et al.  Interactions of nonsteroidal antiinflammatory drugs with phospholipids: comparison between octanol/buffer partition coefficients and chromatographic indexes on immobilized artificial membranes. , 1997, Journal of pharmaceutical sciences.

[93]  J. Goodwin,et al.  Physicochemical determinants of passive membrane permeability: role of solute hydrogen-bonding potential and volume. , 2001, Journal of medicinal chemistry.

[94]  J. Tolan,et al.  MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. , 1999, Journal of pharmaceutical sciences.

[95]  Kristina Luthman,et al.  Prediction of Membrane Permeability to Peptides from Calculated Dynamic Molecular Surface Properties , 1999, Pharmaceutical Research.

[96]  C. Hansch,et al.  p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure , 1964 .

[97]  I. Wainer,et al.  Deactivated hydrocarbonaceous silica and immobilized artificial membrane stationary phases in high-performance liquid chromatographic determination of hydrophobicities of organic bases: relationship to log P and CLOGP. , 1993, Journal of pharmaceutical and biomedical analysis.

[98]  D. E. Clark In silico prediction of blood-brain barrier permeation. , 2003, Drug discovery today.

[99]  Kenneth M. Merz,et al.  Computation of the physio‐chemical properties and data mining of large molecular collections , 2002, J. Comput. Chem..

[100]  R. Taft,et al.  Solubility properties in polymers and biological media: 6. An equation for correlation and prediction of solubilities of liquid organic nonelectrolytes in blood. , 1986, Journal of pharmaceutical sciences.

[101]  H. Kubinyi,et al.  3D QSAR in drug design. , 2002 .

[102]  K. Kontturi,et al.  Electrochemical determination of partition coefficients of drugs. , 1992, Journal of pharmaceutical sciences.

[103]  B Testa,et al.  Binding of arylpiperazines, (aryloxy)propanolamines, and tetrahydropyridylindoles to the 5-HT1A receptor: contribution of the molecular lipophilicity potential to three-dimensional quantitative structure-affinity relationship models. , 1996, Journal of medicinal chemistry.

[104]  K. Audus,et al.  The Use of Cultured Epithelial and Endothelial Cells for Drug Transport and Metabolism Studies , 1990, Pharmaceutical Research.

[105]  V A Parsegian,et al.  Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. , 1992, Biophysical journal.

[106]  David E. Clark,et al.  Enhancing the Hit-to-Lead Properties of Lead Optimization Libraries , 2000, J. Chem. Inf. Comput. Sci..

[107]  F. Scholz,et al.  An electrochemical method for determination of the standard Gibbs energy of anion transfer between water and n-octanol , 2002 .

[108]  Han van de Waterbeemd,et al.  Substructure and whole molecule approaches for calculating log P , 2001, J. Comput. Aided Mol. Des..

[109]  Y. Marcus,et al.  Polarity, hydrogen bonding, and structure of mixtures of water and cyanomethane , 1991 .

[110]  S. Wold Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models , 1978 .

[111]  James A. Platts,et al.  Estimation of Molecular Linear Free Energy Relationship Descriptors by a Group Contribution Approach. 2. Prediction of Partition Coefficients , 2000, J. Chem. Inf. Comput. Sci..

[112]  Ettore Novellino,et al.  A Critical Review of Recent CoMFA Applications , 1998 .

[113]  A. Leo CALCULATING LOG POCT FROM STRUCTURES , 1993 .

[114]  H. Girault,et al.  The Apparent Lipophilicity of Quaternary Ammonium Ions Is Influenced by Galvani Potential Difference, Not Ion-Pairing: A Cyclic Voltammetry Study , 2001, Pharmaceutical Research.

[115]  James A. Platts,et al.  Estimation of Molecular Linear Free Energy Relation Descriptors Using a Group Contribution Approach , 1999, J. Chem. Inf. Comput. Sci..

[116]  Peter C. Jurs,et al.  Computer-Assisted Computation of Partition Coefficients from Molecular Structures Using Fragment Constants , 1979, J. Chem. Inf. Comput. Sci..

[117]  C. Hansch,et al.  A NEW SUBSTITUENT CONSTANT, PI, DERIVED FROM PARTITION COEFFICIENTS , 1964 .

[118]  K. Kubica,et al.  The electrostatics of lipid surfaces. , 1999, Chemistry and physics of lipids.

[119]  Per Artursson,et al.  Prediction of the Oral Absorption of Low-Permeability Drugs Using Small Intestine-Like 2/4/A1 Cell Monolayers , 2003, Pharmaceutical Research.

[120]  Albert J. Leo,et al.  Calculating log P(oct) with no missing fragments; The problem of estimating new interaction parameters , 2000 .

[121]  M. Khaledi,et al.  Hydrophobicity estimations by reversed-phase liquid chromatography. Implications for biological partitioning processes. , 1993, Journal of chromatography.

[122]  S. Krämer,et al.  The pH-Dependence in the Partitioning Behaviour of (RS)-[3H]Propranolol Between MDCK Cell Lipid Vesicles and Buffer , 1996, Pharmaceutical Research.

[123]  B. D. Anderson,et al.  Microscale titrimetric and spectrophotometric methods for determination of ionization constants and partition coefficients of new drug candidates. , 1998, Journal of pharmaceutical sciences.

[124]  G. R. Famini,et al.  Solubility properties in polymers and biological media 5: an analysis of the physicochemical properties which influence octanol-water partition coefficients of aliphatic and aromatic solutes. , 1985, Journal of pharmaceutical sciences.

[125]  David J. Livingstone,et al.  The Characterization of Chemical Structures Using Molecular Properties. A Survey , 2000, J. Chem. Inf. Comput. Sci..

[126]  A. Seelig,et al.  Blood-Brain Barrier Permeation: Molecular Parameters Governing Passive Diffusion , 1998, The Journal of Membrane Biology.

[127]  T. Kennedy Managing the drug discovery/development interface , 1997 .

[128]  Herman J. C. Berendsen,et al.  Permeation Process of Small Molecules across Lipid Membranes Studied by Molecular Dynamics Simulations , 1996 .

[129]  Vijay K. Gombar,et al.  Assessment of n-Octanol/Water Partition Coefficient: When Is the Assessment Reliable? , 1996, J. Chem. Inf. Comput. Sci..

[130]  M. Klein,et al.  Constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer. , 1995, Biophysical journal.

[131]  G. Betageri,et al.  Thermodynamics of partitioning of β-blockers in the n-octanol- buffer and liposome systems , 1987 .

[132]  K. Luthman,et al.  Caco-2 monolayers in experimental and theoretical predictions of drug transport , 1996 .

[133]  L. A. Meijer,et al.  Self-consistent-field modeling of complex molecules with united atom detail in inhomogeneous systems. Cyclic and branched foreign molecules in dimyristoylphosphatidylcholine membranes , 1999 .

[134]  Ulf Norinder,et al.  Theoretical Calculation and Prediction of Caco-2 Cell Permeability Using MolSurf Parametrization and PLS Statistics , 1997, Pharmaceutical Research.

[135]  R. Wade,et al.  New hydrogen-bond potentials for use in determining energetically favorable binding sites on molecules of known structure. , 1989, Journal of medicinal chemistry.

[136]  J. Legendre,et al.  Determination of the passive absorption through the rat intestine using chromatographic indices and molar volume. , 2001, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[137]  J. Platts,et al.  Correlation and prediction of a large blood-brain distribution data set--an LFER study. , 2001, European journal of medicinal chemistry.

[138]  Relation between the molecular electrostatic potential and activity of some FF-MAS related sterol compounds. , 2001, Bioorganic & medicinal chemistry.

[139]  R. Löbenberg,et al.  Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[140]  M. Tammi,et al.  Epidermal cell culture model derived from rat keratinocytes with permeability characteristics comparable to human cadaver skin. , 2003, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[141]  R. Neubert Ion Pair Transport Across Membranes , 1989, Pharmaceutical Research.

[142]  A. Parsegian,et al.  Energy of an Ion crossing a Low Dielectric Membrane: Solutions to Four Relevant Electrostatic Problems , 1969, Nature.

[143]  Peter D J Grootenhuis,et al.  Predicting passive transport in silico--history, hype, hope. , 2003, Current topics in medicinal chemistry.

[144]  Juan M. Luco,et al.  Prediction of the Brain-Blood Distribution of a Large Set of Drugs from Structurally Derived Descriptors Using Partial Least-Squares (PLS) Modeling , 1999, J. Chem. Inf. Comput. Sci..

[145]  A. Ghose,et al.  Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods , 1998 .

[146]  R. Conradi,et al.  The Influence of Peptide Structure on Transport Across Caco-2 Cells , 1991, Pharmaceutical Research.

[147]  J J Baldwin,et al.  Prediction of drug absorption using multivariate statistics. , 2000, Journal of medicinal chemistry.

[148]  Harpreet S. Chadha,et al.  Determination of solute lipophilicity, as log P(octanol) and log P(alkane) using poly(styrene–divinylbenzene) and immobilised artificial membrane stationary phases in reversed-phase high-performance liquid chromatography , 1997 .

[149]  U Norinder,et al.  Experimental and computational screening models for the prediction of intestinal drug absorption. , 2001, Journal of medicinal chemistry.

[150]  J. Slotte,et al.  Characterization of flavonoid--biomembrane interactions. , 2002, Archives of biochemistry and biophysics.

[151]  D. Mackay,et al.  Linear solvation energy relationships. 44. Parameter estimation rules that allow accurate prediction of octanol/water partition coefficients and other solubility and toxicity properties of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. , 1988, Environmental science & technology.

[152]  H. Girault,et al.  Structure-Lipophilicity Relationships of Neutral and Protonated β-Blockers, Part I, Intra- and Intermolecular Effects in Isotropic Solvent Systems , 1999 .

[153]  A. Urtti,et al.  Different effects of pH on the permeation of pilocarpine and pilocarpine prodrugs across the isolated rabbit cornea. , 1998, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[154]  W. Hubbell,et al.  Molecular motion in spin-labeled phospholipids and membranes. , 1971, Journal of the American Chemical Society.

[155]  N el Tayar,et al.  Partitioning of solutes in different solvent systems: the contribution of hydrogen-bonding capacity and polarity. , 1991, Journal of pharmaceutical sciences.

[156]  Nagamany Nirmalakhandan,et al.  ES&T Critical Review: Structure-activity relationships. Quantitative techniques for predicting the behavior of chemicals in the ecosystem , 1988 .

[157]  T. Kissel,et al.  Heterogeneity in the human intestinal cell line Caco-2 leads to differences in transepithelial transport , 1995 .

[158]  K. Kontturi,et al.  Electrochemistry at Lipid Monolayer-Modified Liquid−Liquid Interfaces as an Improvement to Drug Partitioning Studies , 2001 .

[159]  H. Girault,et al.  Generalization of ionic partition diagrams to lipophilic compounds and to biphasic systems with variable phase volume ratios. , 2001, Journal of the American Chemical Society.

[160]  N. Schipper,et al.  Automated Absorption Assessment Using Caco-2 Cells Cultured on Both Sides of Polycarbonate Membranes , 1999, Pharmaceutical Research.

[161]  R. Kaliszan Quantitative structure-retention relationships , 1992 .

[162]  J. Hermens,et al.  Understanding and estimating membrane/water partition coefficients: approaches to derive quantitative structure property relationships. , 1998, Chemical research in toxicology.

[163]  K. Iseki,et al.  A general approach for the prediction of the intestinal absorption of drugs: regression analysis using the physicochemical properties and drug-membrane electrostatic interaction. , 1998, Journal of pharmaceutical sciences.

[164]  William J Egan,et al.  Prediction of intestinal permeability. , 2002, Advanced drug delivery reviews.

[165]  C. Lohmann,et al.  Predicting Blood-Brain Barrier Permeability of Drugs: Evaluation of Different In Vitro Assays , 2002, Journal of drug targeting.

[166]  J. Seelig,et al.  The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. , 1974, Biochemistry.

[167]  Per Artursson,et al.  Intestinal Drug Absorption and Metabolism in Cell Cultures: Caco-2 and Beyond , 1997, Pharmaceutical Research.

[168]  E. Brekkan,et al.  Immobilized liposome and biomembrane partitioning chromatography of drugs for prediction of drug transport , 1998 .

[169]  G. Cruciani,et al.  Comparative molecular field analysis using GRID force-field and GOLPE variable selection methods in a study of inhibitors of glycogen phosphorylase b. , 1994, Journal of medicinal chemistry.

[170]  K. Dill,et al.  Solute partitioning into lipid bilayer membranes. , 1988, Biochemistry.

[171]  M. Abraham,et al.  Calculations on ionic solvation. Part 1.—Free energies of solvation of gaseous univalent ions using a one-layer continuum model , 1978 .

[172]  A. Bangham Liposomes: the Babraham connection. , 1993, Chemistry and physics of lipids.

[173]  Christel A. S. Bergström,et al.  Absorption classification of oral drugs based on molecular surface properties. , 2003, Journal of medicinal chemistry.

[174]  K. Luthman,et al.  Correlation of drug absorption with molecular surface properties. , 1996, Journal of pharmaceutical sciences.

[175]  Michael H. Abraham,et al.  Linear solvation energy relationships. 29. Solution properties of some tetraalkylammonium halide ion pairs and dissociated ions , 1985 .

[176]  Bernard Testa,et al.  Immobilized artificial membrane HPLC in drug research. , 2003, Journal of medicinal chemistry.

[177]  M. Iseki,et al.  Lipid bilayer formation in a microporous membrane filter monitored by ac impedance analysis and purple membrane photoresponses , 1996 .

[178]  C. Pidgeon,et al.  Thermodynamics of solute partitioning into immobilized artificial membranes. , 1995, Analytical chemistry.

[179]  A. Bangham,et al.  Diffusion of univalent ions across the lamellae of swollen phospholipids. , 1965, Journal of molecular biology.

[180]  H. Wunderli-Allenspach,et al.  Immobilized Artificial Membrane (lAM)-HPLC for Partition Studies of Neutral and Ionized Acids and Bases in Comparison with the Liposomal Partition System , 1999, Pharmaceutical Research.

[181]  Michael H. Abraham,et al.  Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, .pi.*, .alpha., and .beta., and some methods for simplifying the generalized solvatochromic equation , 1983 .

[182]  H. Girault,et al.  The pH-Partition Profile of the Anti-Ischemic Drug Trimetazidine May Explain Its Reduction of Intracellular Acidosis , 1999, Pharmaceutical Research.

[183]  P. Carrupt,et al.  Development of molecular hydrogen-bonding potentials (MHBPs) and their application to structure-permeation relations. , 2001, Journal of molecular graphics & modelling.

[184]  P. Furet,et al.  3D molecular lipophilicity potential profiles: a new tool in molecular modeling , 1988 .

[185]  Gary O. Spessard,et al.  ACD Labs/LogP dB 3.5 and ChemSketch 3.5 , 1998, J. Chem. Inf. Comput. Sci..

[186]  Anne Hersey,et al.  Rate-Limited Steps of Human Oral Absorption and QSAR Studies , 2002, Pharmaceutical Research.

[187]  Peter A. Kollman,et al.  Investigation of Structure, Dynamics, and Solvation in 1-Octanol and Its Water-Saturated Solution: Molecular Dynamics and Free-Energy Perturbation Studies , 1995 .

[188]  B. Müller,et al.  Drug Liposome Partitioning as a Tool for the Prediction of Human Passive Intestinal Absorption , 1999, Pharmaceutical Research.

[189]  J. Platts,et al.  Hydrogen bond structural group constants. , 2001, The Journal of organic chemistry.

[190]  C. Nakamura,et al.  Immobilized liposome chromatography to study drug-membrane interactions. Correlation with drug absorption in humans. , 2002, Journal of chromatography. A.

[191]  P. Artursson,et al.  Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. , 1991, Biochemical and biophysical research communications.

[192]  Kristina Luthman,et al.  Polar Molecular Surface Properties Predict the Intestinal Absorption of Drugs in Humans , 1997, Pharmaceutical Research.

[193]  Aalt Bast,et al.  Comprehensive medicinal chemistry , 1991 .

[194]  C. Pidgeon,et al.  Immobilized Artificial Membranes — screens for drug membrane interactions , 1997 .

[195]  T. Osakai,et al.  Hydration of Ions in Organic Solvent and Its Significance in the Gibbs Energy of Ion Transfer between Two Immiscible Liquids , 1997 .

[196]  B. Faller,et al.  High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. , 2001, Journal of medicinal chemistry.

[197]  P. Carrupt,et al.  Molecular fields in quantitative structure–permeation relationships: the VolSurf approach , 2000 .

[198]  D. M. Ryan,et al.  Rational design of potent sialidase-based inhibitors of influenza virus replication , 1993, Nature.

[199]  Michael H. Abraham,et al.  The Factors that Influence Skin Penetration of Solutes * , 1995 .

[200]  M. Abraham,et al.  Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: comparison with other lipophilicity measures. , 2000, Journal of pharmaceutical sciences.

[201]  D. E. Clark,et al.  Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. , 1999, Journal of pharmaceutical sciences.

[202]  Stephen R. Johnson,et al.  Molecular properties that influence the oral bioavailability of drug candidates. , 2002, Journal of medicinal chemistry.

[203]  H. Girault,et al.  Ionic Partition Diagrams: A Potential−pH Representation , 1996 .

[204]  Igor V. Tetko,et al.  Neural Network Modeling for Estimation of Partition Coefficient Based on Atom-Type Electrotopological State Indices , 2000, J. Chem. Inf. Comput. Sci..

[205]  K. Luthman,et al.  Evaluation of dynamic polar molecular surface area as predictor of drug absorption: comparison with other computational and experimental predictors. , 1998, Journal of medicinal chemistry.

[206]  P. Selzer,et al.  Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. , 2000, Journal of medicinal chemistry.

[207]  C. Pidgeon,et al.  Immobilized-artificial-membrane chromatography: measurements of membrane partition coefficient and predicting drug membrane permeability. , 1996, Journal of chromatography. A.

[208]  A. Volkov Liquid Interfaces In Chemical, Biological And Pharmaceutical Applications , 2001 .

[209]  M. Abraham,et al.  Hydrogen bonding. 47. Characterization of the ethylene glycol-heptane partition system: hydrogen bond acidity and basicity of peptides. , 1999, Journal of pharmaceutical sciences.

[210]  P. Lundahl,et al.  Immobilized liposome chromatography of drugs for model analysis of drug-membrane interactions , 1997 .

[211]  T. Osakai,et al.  Non-Bornian Theory of the Gibbs Energy of Ion Transfer between Two Immiscible Liquids , 1998 .

[212]  Arthur Dalby,et al.  Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited , 1992, J. Chem. Inf. Comput. Sci..

[213]  W. Meylan,et al.  Atom/fragment contribution method for estimating octanol-water partition coefficients. , 1995, Journal of pharmaceutical sciences.

[214]  A. Leo,et al.  Partition coefficients and their uses , 1971 .

[215]  Jean-Pierre Dubost,et al.  Une nouvelle approche des relations structure-activité: le «potentiel de lipophilie moléculaire» , 1986 .

[216]  G. Betageri,et al.  The liposome as a distribution model in QSAR studies , 1988 .

[217]  Q. Yang,et al.  Immobilized-liposome chromatographic analysis of drug partitioning into lipid bilayers. , 1995, Journal of chromatography. A.

[218]  R. Kaliszan,et al.  Chromatographic hydrophobicity parameter determined on an immobilized artificial membrane column: relationships to standard measures of hydrophobicity and bioactivity , 1994 .

[219]  J R Chretien,et al.  Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. , 1998, Journal of drug targeting.

[220]  Michael H. Abraham,et al.  LINEAR SOLVATION ENERGY RELATIONSHIPS. 23. A COMPREHENSIVE COLLECTION OF THE SOLVATOCHROMIC PARAMETERS, Π*, α, AND β, AND SOME METHODS FOR SIMPLIFYING THE GENERALIZED SOLVATOCHROMIC EQUATION , 1984 .

[221]  D. E. Clark Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. , 1999, Journal of pharmaceutical sciences.

[222]  G Folkers,et al.  Review of theoretical passive drug absorption models: historical background, recent developments and limitations. , 1996, Pharmaceutica acta Helvetiae.

[223]  Hans Lennernäs,et al.  Intestinal Permeability: Prediction from Theory , 2000 .

[224]  M. Karelson Molecular descriptors in QSAR/QSPR , 2000 .