A new probe for super-resolution imaging of membranes elucidates trafficking pathways

mCLING is a novel membrane probe for the study of membrane trafficking with demonstrated value in both live and fixed cells across a wide range of biological systems.

[1]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[2]  Silvio O Rizzoli,et al.  The same synaptic vesicles drive active and spontaneous release , 2010, Nature Neuroscience.

[3]  S. Hell,et al.  Endosomal sorting of readily releasable synaptic vesicles , 2010, Proceedings of the National Academy of Sciences.

[4]  F. Schmitz,et al.  A Local, Periactive Zone Endocytic Machinery at Photoreceptor Synapses in Close Vicinity to Synaptic Ribbons , 2013, The Journal of Neuroscience.

[5]  Gary Matthews,et al.  The diverse roles of ribbon synapses in sensory neurotransmission , 2010, Nature Reviews Neuroscience.

[6]  E. Glowatzki,et al.  Time course and calcium dependence of transmitter release at a single ribbon synapse , 2007, Proceedings of the National Academy of Sciences.

[7]  X. Zhuang,et al.  Superresolution Imaging of Chemical Synapses in the Brain , 2010, Neuron.

[8]  G. Matthews,et al.  Visualizing Synaptic Ribbons in the Living Cell , 2004, The Journal of Neuroscience.

[9]  T. Moser,et al.  Otoferlin: a multi-C2 domain protein essential for hearing , 2012, Trends in Neurosciences.

[10]  J. Bonifacino,et al.  The Mechanisms of Vesicle Budding and Fusion , 2004, Cell.

[11]  J. Hablitz,et al.  Kainate Modulates Presynaptic GABA Release from Two Vesicle Pools , 2008, The Journal of Neuroscience.

[12]  Y. Jan,et al.  Properties of the larval neuromuscular junction in Drosophila melanogaster. , 1976, The Journal of physiology.

[13]  J. Burrone,et al.  A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse , 2009, Nature Neuroscience.

[14]  A. Egner,et al.  Bassoon and the Synaptic Ribbon Organize Ca2+ Channels and Vesicles to Add Release Sites and Promote Refilling , 2010, Neuron.

[15]  Mark Ellisman,et al.  Depolarization Redistributes Synaptic Membrane and Creates a Gradient of Vesicles on the Synaptic Body at a Ribbon Synapse , 2002, Neuron.

[16]  B. Kachar,et al.  Compartmentalized vesicular traffic around the hair cell cuticular plate , 1997, Hearing Research.

[17]  Chris S Bresee,et al.  Probing the Functional Equivalence of Otoferlin and Synaptotagmin 1 in Exocytosis , 2011, The Journal of Neuroscience.

[18]  H. Kennedy,et al.  FM1-43 Dye Behaves as a Permeant Blocker of the Hair-Cell Mechanotransducer Channel , 2001, The Journal of Neuroscience.

[19]  S. Kügler,et al.  Long-term rescue of a lethal inherited disease by adeno-associated virus-mediated gene transfer in a mouse model of molybdenum-cofactor deficiency. , 2007, American journal of human genetics.

[20]  Ege T. Kavalali,et al.  Vti1a Identifies a Vesicle Pool that Preferentially Recycles at Rest and Maintains Spontaneous Neurotransmission , 2012, Neuron.

[21]  Mike Heilemann,et al.  Super-resolution Imaging Reveals the Internal Architecture of Nano-sized Syntaxin Clusters* , 2012, The Journal of Biological Chemistry.

[22]  J. T. Corwin,et al.  Lighting up the Senses: FM1-43 Loading of Sensory Cells through Nonselective Ion Channels , 2003, The Journal of Neuroscience.

[23]  B. Fakler,et al.  Otoferlin Couples to Clathrin-Mediated Endocytosis in Mature Cochlear Inner Hair Cells , 2013, The Journal of Neuroscience.

[24]  E. Neher,et al.  The reserve pool of synaptic vesicles acts as a buffer for proteins involved in synaptic vesicle recycling , 2011, Proceedings of the National Academy of Sciences.

[25]  J. Ashmore,et al.  Apical endocytosis in outer hair cells of the mammalian cochlea , 2004, The European journal of neuroscience.

[26]  R. Tsien,et al.  Kiss‐and‐run and full‐collapse fusion as modes of exo‐endocytosis in neurosecretion , 2006, Journal of neurochemistry.

[27]  Hazen P. Babcock,et al.  Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton , 2011, Nature Methods.

[28]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[29]  S. Rizzoli,et al.  FM Dye Photo-Oxidation as a Tool for Monitoring Membrane Recycling in Inner Hair Cells , 2014, PloS one.

[30]  Marcel A. Lauterbach,et al.  Far-Field Optical Nanoscopy , 2009 .

[31]  Martin Wienisch,et al.  Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical , 2006, Nature Neuroscience.

[32]  W. Betz,et al.  Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  Eunyoung Yi,et al.  Sensorineural Deafness and Seizures in Mice Lacking Vesicular Glutamate Transporter 3 , 2008, Neuron.

[34]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[35]  S. Kügler,et al.  Modes and Regulation of Endocytic Membrane Retrieval in Mouse Auditory Hair Cells , 2014, The Journal of Neuroscience.

[36]  Ulrich Müller,et al.  Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells , 2010, Nature Neuroscience.

[37]  B. Goud,et al.  Recombinant Antibodies Against Subcellular Fractions Used to Track Endogenous Golgi Protein Dynamics in Vivo , 2003, Traffic.

[38]  W. Maxwell Cowan,et al.  Rat hippocampal neurons in dispersed cell culture , 1977, Brain Research.

[39]  S. Emr,et al.  A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast , 1995, The Journal of cell biology.

[40]  K. Ikeda,et al.  Synaptic vesicles have two distinct recycling pathways , 1996, The Journal of cell biology.

[41]  J. Siegel,et al.  Synaptic and Golgi membrane recycling in cochlear hair cells , 1986, Journal of neurocytology.

[42]  C. Govind,et al.  Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. , 1993, Journal of neurobiology.

[43]  Bor Luen Tang,et al.  Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform , 2002, The Journal of cell biology.

[44]  Craig C. Garner,et al.  v-SNARE Composition Distinguishes Synaptic Vesicle Pools , 2011, Neuron.

[45]  S. Rizzoli,et al.  Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Jurgen Klingauf,et al.  Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool , 2007, Nature Neuroscience.

[47]  S. Spicer,et al.  Novel membranous structures in apical and basal compartments of inner hair cells , 1999, The Journal of comparative neurology.

[48]  A. Egner,et al.  Hair cell synaptic ribbons are essential for synchronous auditory signalling , 2005, Nature.

[49]  Jonathan F. Ashmore,et al.  FM1-43 Reveals Membrane Recycling in Adult Inner Hair Cells of the Mammalian Cochlea , 2002, The Journal of Neuroscience.

[50]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[51]  Xinran Liu,et al.  Acute Dynamin Inhibition Dissects Synaptic Vesicle Recycling Pathways That Drive Spontaneous and Evoked Neurotransmission , 2010, The Journal of Neuroscience.

[52]  Xinran Liu,et al.  An Isolated Pool of Vesicles Recycles at Rest and Drives Spontaneous Neurotransmission , 2005, Neuron.

[53]  J. Ashmore,et al.  Fast vesicle replenishment allows indefatigable signalling at the first auditory synapse , 2005, Nature.

[54]  T. Südhof,et al.  RIBEYE, a Component of Synaptic Ribbons A Protein's Journey through Evolution Provides Insight into Synaptic Ribbon Function , 2000, Neuron.

[55]  Tobias Moser,et al.  Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells , 2009, Proceedings of the National Academy of Sciences.

[56]  Thorsten Lang,et al.  Anatomy and Dynamics of a Supramolecular Membrane Protein Cluster , 2007, Science.

[57]  Paul A. Fuchs,et al.  Transmitter release at the hair cell ribbon synapse , 2002, Nature Neuroscience.

[58]  P. Avan,et al.  Otoferlin, Defective in a Human Deafness Form, Is Essential for Exocytosis at the Auditory Ribbon Synapse , 2006, Cell.

[59]  S. Spicer,et al.  Mitochondria-activated cisternae generate the cell specific vesicles in auditory hair cells , 2007, Hearing Research.

[60]  B. Giros,et al.  Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. , 2008, American journal of human genetics.

[61]  Jyothi Arikkath,et al.  Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex , 2012, Nature Protocols.

[62]  J. Bennett,et al.  In vivo delivery of recombinant viruses to the fetal murine cochlea: transduction characteristics and long-term effects on auditory function. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[63]  P. Greengard,et al.  A 38,000-dalton membrane protein (p38) present in synaptic vesicles. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Stephan J. Sigrist,et al.  Bruchpilot Promotes Active Zone Assembly, Ca2+ Channel Clustering, and Vesicle Release , 2006, Science.

[65]  Yunfeng Hua,et al.  A common origin of synaptic vesicles undergoing evoked and spontaneous fusion , 2010, Nature Neuroscience.