Individual homogenization of nonlinear parabolic operators

In this article, we prove an individual homogenization result for a class of almost periodic nonlinear parabolic operators. The spatial and temporal heterogeneities are almost periodic functions in the sense of Besicovitch. The latter allows discontinuities and is suitable for many applications. First, we derive stability and comparison estimates for sequences of G-convergent nonlinear parabolic operators. Furthermore, using these estimates, the individual homogenization result is shown.

[1]  Yalchin Efendiev,et al.  Homogenization of nonlinear random parabolic operators , 2005, Advances in Differential Equations.

[2]  P. Donato,et al.  An introduction to homogenization , 2000 .

[3]  N. Svanstedt Correctors for the Homogenization of Monotone Parabolic Operators , 2000, math/0007207.

[4]  Anneliese Defranceschi,et al.  Homogenization of Multiple Integrals , 1999 .

[5]  Alexander Pankov,et al.  G-Convergence and Homogenization of Nonlinear Partial Differential Operators , 1997 .

[6]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[7]  Andrea Braides,et al.  Homogenization of almost periodic monotone operators , 1992 .

[8]  A. Pankov STRONG G-CONVERGENCE OF NONLINEAR ELLIPTIC OPERATORS AND HOMOGENIZATION , 1991 .

[9]  Alexander Pankov,et al.  Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations , 1990 .

[10]  Gianni Dal Maso,et al.  G-convergence of monotone operators , 1990 .

[11]  K. Gröger,et al.  AW1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations , 1989 .

[12]  Nicola Fusco,et al.  On the homogenization of quasilinear divergence structure operators , 1986 .

[13]  V. V. Zhikov,et al.  AVERAGING OF PARABOLIC OPERATORS WITH ALMOST PERIODIC COEFFICIENTS , 1983 .

[14]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[15]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[16]  Yalchin Efendiev,et al.  Numerical Homogenization and Correctors for Nonlinear Elliptic Equations , 2004, SIAM J. Appl. Math..

[17]  Yalchin Efendiev,et al.  Numerical Homogenization of Nonlinear Random Parabolic Operators , 2004, Multiscale Model. Simul..

[18]  Yalchin Efendiev,et al.  Numerical Homogenization of Monotone Elliptic Operators , 2003, Multiscale Model. Simul..

[19]  A. Pankov,et al.  TIME AVERAGING FOR RANDOM NONLINEAR ABSTRACT PARABOLIC EQUATIONS , 2000 .

[20]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[21]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[22]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 2017 .

[23]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.