An analytical study of peer-to-peer media streaming systems

Recent research efforts have demonstrated the great potential of building cost-effective media streaming systems on top of peer-to-peer (P2P) networks. A P2P media streaming architecture can reach a large streaming capacity that is difficult to achieve in conventional server-based streaming services. Hybrid streaming systems that combine the use of dedicated streaming servers and P2P networks were proposed to build on the advantages of both paradigms. However, the dynamics of such systems and the impact of various factors on system behavior are not totally clear. In this article, we present an analytical framework to quantitatively study the features of a hybrid media streaming model. Based on this framework, we derive an equation to describe the capacity growth of a single-file streaming system. We then extend the analysis to multi-file scenarios. We also show how the system achieves optimal allocation of server bandwidth among different media objects. The unpredictable departure/failure of peers is a critical factor that affects the performance of P2P systems. We utilize the concept of peer lifespan to model peer failures. The original capacity growth equation is enhanced with coefficients generated from peer lifespans that follow an exponential distribution. We also propose a failure model under arbitrarily distributed peer lifespan. Results from large-scale simulations support our analysis.

[1]  Meike J. Wittmann,et al.  Mathematical Ecology , 2006 .

[2]  Fred Douglis,et al.  CDN brokering , 2002, Comput. Commun..

[3]  Jon M. Peha,et al.  Streaming video over the Internet: approaches and directions , 2001, IEEE Trans. Circuits Syst. Video Technol..

[4]  Kien A. Hua,et al.  ZIGZAG: an efficient peer-to-peer scheme for media streaming , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[5]  Anja Feldmann,et al.  Fitting mixtures of exponentials to long-tail distributions to analyze network performance models , 1997, Proceedings of INFOCOM '97.

[6]  Bharat K. Bhargava,et al.  PROMISE: peer-to-peer media streaming using CollectCast , 2003, MULTIMEDIA '03.

[7]  B. E. Eckbo,et al.  Appendix , 1826, Epilepsy Research.

[8]  Rayadurgam Srikant,et al.  Modeling and performance analysis of BitTorrent-like peer-to-peer networks , 2004, SIGCOMM 2004.

[9]  Biplab Sikdar,et al.  An analytic framework for modeling peer to peer networks , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[10]  Ian T. Foster,et al.  Mapping the Gnutella Network , 2002, IEEE Internet Comput..

[11]  Benny Pinkas,et al.  Escrow services and incentives in peer-to-peer networks , 2001, EC '01.

[12]  Antony I. T. Rowstron,et al.  PAST: a large-scale, persistent peer-to-peer storage utility , 2001, Proceedings Eighth Workshop on Hot Topics in Operating Systems.

[13]  David R. Karger,et al.  Wide-area cooperative storage with CFS , 2001, SOSP.

[14]  Paul Francis,et al.  IDMaps: a global internet host distance estimation service , 2001, TNET.

[15]  Kevin Leyton-Brown,et al.  Incentives for sharing in peer-to-peer networks , 2001, EC '01.

[16]  David R. Karger,et al.  Chord: a scalable peer-to-peer lookup protocol for internet applications , 2003, TNET.

[17]  Avideh Zakhor,et al.  Distributed video streaming over Internet , 2001, IS&T/SPIE Electronic Imaging.

[18]  Bharat K. Bhargava,et al.  A hybrid architecture for cost-effective on-demand media streaming , 2004, Comput. Networks.

[19]  Helen J. Wang,et al.  Distributing streaming media content using cooperative networking , 2002, NOSSDAV '02.

[20]  Bharat K. Bhargava,et al.  On peer-to-peer media streaming , 2002, Proceedings 22nd International Conference on Distributed Computing Systems.

[21]  Robert B. Cooper,et al.  An Introduction To Queueing Theory , 2016 .

[22]  Robert B. Cooper,et al.  Queueing Theory , 2014, Encyclopedia of Social Network Analysis and Mining.

[23]  F. Gantmacher,et al.  Applications of the theory of matrices , 1960 .

[24]  Stefan Savage,et al.  Understanding Availability , 2003, IPTPS.

[25]  Mark Handley,et al.  A scalable content-addressable network , 2001, SIGCOMM '01.

[26]  Jon Crowcroft,et al.  Peer to Peer: Peering into the Future , 2002, NETWORKING Tutorials.

[27]  David R. Karger,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM '01.

[28]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[29]  S. Qiao,et al.  A Robust and Eecient Algorithm for Evaluating Erlang B Formula , 1998 .

[30]  E. Chong,et al.  Introduction to optimization , 1987 .

[31]  Fabián E. Bustamante,et al.  Friendships that Last: Peer Lifespan and its Role in P2P Protocols , 2003, WCW.

[32]  R. Srikant,et al.  Modeling and performance analysis of BitTorrent-like peer-to-peer networks , 2004, SIGCOMM '04.

[33]  J. Miller Numerical Analysis , 1966, Nature.

[34]  Antony I. T. Rowstron,et al.  Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems , 2001, Middleware.

[35]  Krishna P. Gummadi,et al.  Measuring and analyzing the characteristics of Napster and Gnutella hosts , 2003, Multimedia Systems.

[36]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[37]  Newton Lee,et al.  ACM Transactions on Multimedia Computing, Communications and Applications (ACM TOMCCAP) , 2007, CIE.

[38]  Matthias Jarke,et al.  Performance Modeling of Distributed and Replicated Databases , 2000, IEEE Trans. Knowl. Data Eng..

[39]  Antony I. T. Rowstron,et al.  Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage utility , 2001, SOSP.

[40]  Gustavo de Veciana,et al.  Service capacity of peer to peer networks , 2004, IEEE INFOCOM 2004.

[41]  Catherine Rosenberg,et al.  Analysis of a Hybrid Architecture for Cost-Effective Streaming Media Distribution , 2003, IS&T/SPIE Electronic Imaging.

[42]  Sunil Prabhakar,et al.  Performance analysis of a hybrid media streaming system , 2003, IS&T/SPIE Electronic Imaging.