Adaptive robust output feedback control of a magnetic levitation system by k-filter approach

This work proposes an adaptive robust output feedback controller for position-tracking problem of a magnetic levitation system with a current feedback power amplifier. The controller is designed by a backstepping procedure with robustifying modification of the k-filter approach. The boundedness and guaranteed transient performance of the error signals are achieved by the nonlinear damping terms. And the ultimate position-tracking error is reduced by the adaptive laws. Experimental results are included to show the excellent control performance of the designed controller.

[1]  F. Ashcroft,et al.  VIII. References , 1955 .

[2]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[3]  D. Cho,et al.  Sliding mode and classical controllers in magnetic levitation systems , 1993, IEEE Control Systems.

[4]  Zi‐Jiang Yang,et al.  Impulse Response Identification of Continuous Systems using Generalized Radial Basis Function Networks , 1994 .

[5]  Jian-Shiang Chen,et al.  A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems , 1994, IEEE Trans. Ind. Electron..

[6]  Jian-Shiang Chen,et al.  Design of a perturbation estimator using the theory of variable-structure systems and its application to magnetic levitation systems , 1995, IEEE Trans. Ind. Electron..

[7]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[8]  D. L. Trumper,et al.  Linearizing control of magnetic suspension systems , 1997, IEEE Trans. Control. Syst. Technol..

[9]  Ruth Milman,et al.  Observer-based adaptive control of a variable reluctance motor: experimental results , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[10]  T.-J. Yeh,et al.  Adaptive Control of Nonlinear, Uncertain Systems Using Local Function Estimation , 1998 .

[11]  Anuradha M. Annaswamy,et al.  Applications of Adaptive Controllers to Systems With Nonlinear Parametrization , 1998 .

[12]  Scott A. Green,et al.  Robust, Digital, Nonlinear Control of Magnetic-Levitation Systems , 1998 .

[13]  Ruth Milman,et al.  Observer-based adaptive control of a variable reluctance motor: Experimental results , 1999, IEEE Trans. Control. Syst. Technol..

[14]  Andrew G. Alleyne,et al.  Control of a class of nonlinear systems subject to periodic exogenous signals , 1997, IEEE Trans. Control. Syst. Technol..

[15]  Bin Yao,et al.  Neural network adaptive robust control of nonlinear systems in semi-strict feedback form , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[16]  T.-J. Yeh,et al.  Sliding control of magnetic bearing systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[17]  Chen Weitian,et al.  Adaptive nonlinear control with partial overparametrization , 2001 .

[18]  Li Xu,et al.  Output feedback adaptive robust precision motion control of linear motors , 2001, Autom..

[19]  Zi-Jiang Yang,et al.  Adaptive robust nonlinear control of a magnetic levitation system , 2001, Autom..

[20]  Zi-Jiang Yang,et al.  Adaptive robust nonlinear control of a magnetic levitation system via DSC technique , 2004 .