Hydrogenation of CO2 over Mn-Substituted SrTiO3 Based on the Reverse Mars–van Krevelen Mechanism

[1]  Takashi Toyao,et al.  Reverse water-gas shift reaction over Pt/MoOx/TiO2: reverse Mars–van Krevelen mechanism via redox of supported MoOx , 2021, Catalysis Science & Technology.

[2]  Tsunehiro Tanaka,et al.  NOx Storage Performance at Low Temperature over Platinum Group Metal-Free SrTiO3-Based Material. , 2021, ACS applied materials & interfaces.

[3]  Jing Liu,et al.  Mechanistic understanding of CO2 hydrogenation to methane over Ni/CeO2 catalyst , 2021 .

[4]  J. Kuhn,et al.  Mesoporous Silica Supported Perovskite Oxides for Low Temperature Thermochemical CO2 Conversion , 2020 .

[5]  R. Oriňaková,et al.  Recent Developments in the Modelling of Heterogeneous Catalysts for CO2 Conversion to Chemicals , 2020 .

[6]  Frederick G. Baddour,et al.  An Exceptionally Mild and Scalable Solution-Phase Synthesis of Molybdenum Carbide Nanoparticles for Thermocatalytic CO2 Hydrogenation. , 2020, Journal of the American Chemical Society.

[7]  W. Zhou,et al.  New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. , 2019, Chemical Society reviews.

[8]  P. Fazzini,et al.  Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlOx catalysts , 2019, Catalysis Science & Technology.

[9]  Tsunehiro Tanaka,et al.  Pd/SrFe1- xTi xO3-δ as Environmental Catalyst: Purification of Automotive Exhaust Gases. , 2018, ACS applied materials & interfaces.

[10]  Lili Lin,et al.  In Situ Characterization of Cu/CeO2 Nanocatalysts for CO2 Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity , 2018, The Journal of Physical Chemistry C.

[11]  Tsunehiro Tanaka,et al.  Striking Oxygen-Release/Storage Properties of Fe-Site-Substituted Sr3Fe2O7−δ , 2018 .

[12]  J. Kuhn,et al.  Earth abundant perovskite oxides for low temperature CO2 conversion , 2018 .

[13]  T. Götsch,et al.  CO2 Reduction on the Pre-reduced Mixed Ionic-Electronic Conducting Perovskites La0.6 Sr-0.4 FeO3-δ and SrTi0.7 Fe0.3 O3-δ. , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  Hongmei Xie,et al.  Reduction of CO2 to CO via reverse water-gas shift reaction over CeO2 catalyst , 2018, Korean Journal of Chemical Engineering.

[15]  Yanqiang Huang,et al.  Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions , 2017 .

[16]  M. Illán-Gómez,et al.  Copper doped BaMnO3 perovskite catalysts for NO oxidation and NO2-assisted diesel soot removal , 2017 .

[17]  Tsunehiro Tanaka,et al.  Enhanced oxygen-release/storage properties of Pd-loaded Sr3Fe2O7-δ. , 2017, Physical chemistry chemical physics : PCCP.

[18]  Zhaojie Jiao,et al.  CO2 reverse water‐gas shift reaction on mesoporous M‐CeO2 catalysts , 2017 .

[19]  Lili Lin,et al.  Highly Dispersed Copper over β-Mo2C as an Efficient and Stable Catalyst for the Reverse Water Gas Shift (RWGS) Reaction , 2017 .

[20]  Xiaodong Chen,et al.  Identification of relevant active sites and a mechanism study for reverse water gas shift reaction over Pt/CeO2 catalysts , 2016 .

[21]  M. Boero,et al.  The absence of a gap state and enhancement of the Mars-van Krevelen reaction on oxygen defective Cu/CeO2 surfaces. , 2016, Physical chemistry chemical physics : PCCP.

[22]  Ping Liu,et al.  Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability. , 2016, Journal of the American Chemical Society.

[23]  Jingguang G. Chen,et al.  Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities , 2016 .

[24]  Hui Wang,et al.  Selective catalytic oxidation of ammonia to nitrogen over MnO2 prepared by urea-assisted hydrothermal method , 2015 .

[25]  J. Rodríguez,et al.  The Carburization of Transition Metal Molybdates (MxMoO4, M = Cu, Ni or Co) and the Generation of Highly Active Metal/Carbide Catalysts for CO2 Hydrogenation , 2015, Catalysis Letters.

[26]  F. Kapteijn,et al.  Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts , 2015, Nature Communications.

[27]  Sai Gu,et al.  A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas , 2014 .

[28]  Can Li,et al.  Thermochemical CO2 splitting reaction with CexM1−xO2−δ (M = Ti4+, Sn4+, Hf4+, Zr4+, La3+, Y3+ and Sm3+) solid solutions , 2014 .

[29]  Ping Liu,et al.  CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: Production of CO, methanol, and methane , 2013 .

[30]  Hairong Yue,et al.  A copper-phyllosilicate core-sheath nanoreactor for carbon–oxygen hydrogenolysis reactions , 2013, Nature Communications.

[31]  G. Henkelman,et al.  CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars-van Krevelen Mechanism. , 2013, The journal of physical chemistry letters.

[32]  Wei Wang,et al.  Recent advances in catalytic hydrogenation of carbon dioxide. , 2011, Chemical Society reviews.

[33]  N. Meinshausen,et al.  Greenhouse-gas emission targets for limiting global warming to 2 °C , 2009, Nature.

[34]  Ching-Shiun Chen,et al.  Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction , 2004 .

[35]  Sung-Hwan Han,et al.  Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process , 2001 .

[36]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[37]  R. Vasquez SrCO3 by XPS , 1992 .

[38]  T. Otagawa,et al.  XPS studies on strontium compounds , 1985 .

[39]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[40]  P. Mars,et al.  Oxidations carried out by means of vanadium oxide catalysts , 1954 .