An Adjoint Examination of a Nudging Method for Data Assimilation

Abstract A regional adjoint modeling system is modified to determine the sensitivities of data assimilation and forecast results with respect to perturbations of the nudging fields and coefficients. A generalized linear system is used to explain the sensitivities both mathematically and physically. A linearized shallow-water model is utilized to show that the dynamics determining the sensitivities can be well described in terms of the dynamics of geostrophic adjustment, with the added effects of dissipation and nudging terms. The purpose of the study is to reveal the dynamics responsible for the sensitivities of assimilated fields and forecasts to a given observed variable, and thus to gain insight into what kinds of information are most (or least) effectively assimilated by the nudging method. The results of the adjoint study reveal that the nudging terms contribute significantly to the prognostic tendencies, even if the values of the nudging coefficient are smaller than those commonly used. When either ...

[1]  Ronald M. Errico,et al.  Sensitivity Analysis Using an Adjoint of the PSU-NCAR Mesoseale Model , 1992 .

[2]  Mohan K. Ramamurthy,et al.  Four-Dimensional Data Assimilation in the Monsoon Region. Part I: Experiments with Wind Data , 1987 .

[3]  Dan G. Cacuci,et al.  Sensitivity Analysis of a Radiative-Convective Model by the Adjoint Method , 1982 .

[4]  T. N. Krishnamurti,et al.  Physical initialization for numerical weather prediction over the tropics , 1991 .

[5]  R. Dickinson,et al.  A regional climate model for the western United States , 1989 .

[6]  Ying-Hwa Kuo,et al.  Assimilation of Precipitable Water Measurements into a Mesoscale Numerical Model , 1993 .

[7]  T. Vukicevic,et al.  Mesoscale Adjoint Modeling System: Version 1 , 1994 .

[8]  Ying-Hwa Kuo,et al.  The Interaction between Baroclinic and Diabatic Processes in a Numerical Simulation of a Rapidly Intensifying Extratropical Marine Cyclone , 1991 .

[9]  Y. Kuo,et al.  Description of the Penn State/NCAR Mesoscale Model: Version 4 (MM4) , 1987 .

[10]  G. P. Cressman AN OPERATIONAL OBJECTIVE ANALYSIS SYSTEM , 1959 .

[11]  Richard A. Anthes,et al.  Data Assimilation and Initialization of Hurricane Prediction Models , 1974 .

[12]  D. Stauffer,et al.  Use of Four-Dimensional Data Assimilation in a Limited-Area Mesoscale Model. Part I: Experiments with Synoptic-Scale Data , 1990 .

[13]  Richard Asselin,et al.  Frequency Filter for Time Integrations , 1972 .

[14]  Philippe Courtier,et al.  Sensitivity of forecast errors to initial conditions , 1996 .

[15]  Philippe Courtier,et al.  Interactions of Dynamics and Observations in a Four-Dimensional Variational Assimilation , 1993 .

[16]  R. Errico,et al.  Linearization and adjoint of parameterized moist diabatic processes , 1993 .

[17]  R. V. Madala Efficient Time Integration Schemes for Atmosphere and Ocean Models , 1981 .

[18]  D. Stauffer,et al.  Optimal determination of nudging coefficients using the adjoint equations , 1993 .

[19]  A. Lorenc Optimal nonlinear objective analysis , 1988 .

[20]  T. N. Krishnamurti,et al.  Physical initialization using SSM/I rain rates , 1993 .

[21]  David R. Stauffer,et al.  Use of Four-Dimensional Data Assimilation in a Limited-Area Mesoscale Model Part II: Effects of Data Assimilation within the Planetary Boundary Layer , 1991 .

[22]  M. Errico Theory and Application of Nonlinear Normal Mode Initialization , 1989 .

[23]  Ionel M. Navon,et al.  An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation , 1992 .

[24]  Ricardo Todling,et al.  A fixed-lag Kalman smoother for retrospective data assimilation , 1994 .

[25]  Ronald M. Errico,et al.  Comparison of initial and lateral boundary condition sensitivity for a limited-area model , 1993 .

[26]  J. Deardorff,et al.  Parameterization of the Planetary Boundary layer for Use in General Circulation Models1 , 1972 .

[27]  David R. Stauffer,et al.  Multiscale four-dimensional data assimilation , 1994 .

[28]  Ying-Hwa Kuo,et al.  Dynamic Initialization Using Observations from a Hypothetical Network of Profilers , 1989 .

[29]  J. Hoke,et al.  The Initialization of Numerical Models by a Dynamic-Initialization Technique , 1976 .

[30]  Ronald M. Errico,et al.  Evaluation of physical processes in an idealized extratropical cyclone using adjoint sensitivity , 1995 .