LOW FALSE POSITIVE RATE OF KEPLER CANDIDATES ESTIMATED FROM A COMBINATION OF SPITZER AND FOLLOW-UP OBSERVATIONS

NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) among the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not investigated by the Kepler observations, provides an independent indication that Kepler’s FPR is low.

[1]  Khadeejah A. Zamudio,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. V. PLANET SAMPLE FROM Q1–Q12 (36 MONTHS) , 2015, 1501.07286.

[2]  Hubble Space Telescope High Resolution Imaging of Kepler Small and Cool Exoplanet Host Stars , 2014, 1407.1009.

[3]  David Charbonneau,et al.  KEPLER-93b: A TERRESTRIAL WORLD MEASURED TO WITHIN 120 km, AND A TEST CASE FOR A NEW SPITZER OBSERVING MODE , 2014, 1405.3659.

[4]  J. Lillo-Box,et al.  High-resolution imaging of Kepler planet host candidates - A comprehensive comparison of different techniques , 2014, 1405.3120.

[5]  France,et al.  PASTIS: Bayesian extrasolar planet validation. I. General framework, models, and performance , 2014, 1403.6725.

[6]  E. Agol,et al.  VALIDATION OF KEPLER'S MULTIPLE PLANET CANDIDATES. III. LIGHT CURVE ANALYSIS AND ANNOUNCEMENT OF HUNDREDS OF NEW MULTI-PLANET SYSTEMS , 2014, 1402.6534.

[7]  E. Agol,et al.  VALIDATION OF KEPLER'S MULTIPLE PLANET CANDIDATES. II. REFINED STATISTICAL FRAMEWORK AND DESCRIPTIONS OF SYSTEMS OF SPECIAL INTEREST , 2014, 1402.6352.

[8]  M. R. Haas,et al.  MASSES, RADII, AND ORBITS OF SMALL KEPLER PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS , 2014, 1401.4195.

[9]  M. R. Haas,et al.  CONTAMINATION IN THE KEPLER FIELD. IDENTIFICATION OF 685 KOIs AS FALSE POSITIVES VIA EPHEMERIS MATCHING BASED ON Q1–Q12 DATA , 2014, 1401.1240.

[10]  D. Kipping,et al.  A HIGH FALSE POSITIVE RATE FOR KEPLER PLANETARY CANDIDATES OF GIANT STARS USING ASTERODENSITY PROFILING , 2014, 1401.1207.

[11]  Peter Tenenbaum,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER IV: PLANET SAMPLE FROM Q1–Q8 (22 MONTHS) , 2013, 1312.5358.

[12]  John Asher Johnson,et al.  ROBOTIC LASER ADAPTIVE OPTICS IMAGING OF 715 KEPLER EXOPLANET CANDIDATES USING ROBO-AO , 2013, 1312.4958.

[13]  C. Aerts,et al.  WHAT ASTEROSEISMOLOGY CAN DO FOR EXOPLANETS: KEPLER-410A b IS A SMALL NEPTUNE AROUND A BRIGHT STAR, IN AN ECCENTRIC ORBIT CONSISTENT WITH LOW OBLIQUITY , 2013, 1312.4938.

[14]  C. Moutou,et al.  SOPHIE velocimetry of Kepler transit candidates VII. A false-positive rate of 35% for Kepler close-in giant candidates , 2012, 1206.0601.

[15]  Jaymie M. Matthews,et al.  REVISED STELLAR PROPERTIES OF KEPLER TARGETS FOR THE QUARTER 1–16 TRANSIT DETECTION RUN , 2013, 1312.0662.

[16]  G. Marcy,et al.  Prevalence of Earth-size Planets Orbiting Sun-like Stars , 2015, 1510.03902.

[17]  A Discovery of a Candidate Companion to a Transiting System KOI-94: A Direct Imaging Study for a Possibility of a False Positive , 2013, 1309.2559.

[18]  A. Dupree,et al.  ADAPTIVE OPTICS IMAGES. II. 12 KEPLER OBJECTS OF INTEREST AND 15 CONFIRMED TRANSITING PLANETS , 2013, 1305.6548.

[19]  Howard Isaacson,et al.  Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone , 2013, Science.

[20]  F. Fressin,et al.  EXOPLANET CHARACTERIZATION BY PROXY: A TRANSITING 2.15 R⊕ PLANET NEAR THE HABITABLE ZONE OF THE LATE K DWARF KEPLER-61 , 2013, The Astrophysical Journal.

[21]  M. R. Haas,et al.  A SUPER-EARTH-SIZED PLANET ORBITING IN OR NEAR THE HABITABLE ZONE AROUND A SUN-LIKE STAR , 2013, The Astrophysical Journal.

[22]  Howard Isaacson,et al.  THE MASS OF KOI-94d AND A RELATION FOR PLANET RADIUS, MASS, AND INCIDENT FLUX , 2013, 1303.2150.

[23]  Jon M. Jenkins,et al.  MEASURING TRANSIT SIGNAL RECOVERY IN THE KEPLER PIPELINE. I. INDIVIDUAL EVENTS , 2013, 1303.0255.

[24]  Peter Tenenbaum,et al.  Identification of Background False Positives from Kepler Data , 2013, 1303.0052.

[25]  Howard Isaacson,et al.  FUNDAMENTAL PROPERTIES OF KEPLER PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY , 2013, 1302.2624.

[26]  Howard Isaacson,et al.  KEPLER-68: THREE PLANETS, ONE WITH A DENSITY BETWEEN THAT OF EARTH AND ICE GIANTS , 2013, 1302.2596.

[27]  D. Charbonneau,et al.  THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS , 2013, 1302.1647.

[28]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[29]  Yanqin Wu,et al.  DENSITY AND ECCENTRICITY OF KEPLER PLANETS , 2012, 1210.7810.

[30]  Tx,et al.  Transit timing observations from Kepler - VII. Confirmation of 27 planets in 13 multiplanet systems via transit timing variations and orbital stability , 2012, 1208.3499.

[31]  Las Cumbres Observatory Global Telescope Network,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA , 2012, 1202.5852.

[32]  Kento Masuda,et al.  PLANET–PLANET ECLIPSE AND THE ROSSITER–McLAUGHLIN EFFECT OF A MULTIPLE TRANSITING SYSTEM: JOINT ANALYSIS OF THE SUBARU SPECTROSCOPY AND THE KEPLER PHOTOMETRY , 2012, 1209.4362.

[33]  D. Barrado,et al.  Multiplicity in transiting planet-host stars - A lucky imaging study of Kepler candidates , 2012, 1208.0242.

[34]  Eric B. Ford,et al.  Constraining the false positive rate for Kepler planet candidates with multicolour photometry from the GTC , 2012, 1207.2481.

[35]  T. Morton AN EFFICIENT AUTOMATED VALIDATION PROCEDURE FOR EXOPLANET TRANSIT CANDIDATES , 2012, 1206.1568.

[36]  I. Snellen,et al.  Minimizing follow-up for space-based transit surveys using full lightcurve analysis , 2012, 1206.1235.

[37]  A. Santerne,et al.  SOPHIE velocimetry of Kepler transit candidates VII. A false-positive rate of 35% for Kepler close-in giant candidates , 2012, 1206.0601.

[38]  David R. Ciardi,et al.  ADAPTIVE OPTICS IMAGES OF KEPLER OBJECTS OF INTEREST , 2012, 1205.5535.

[39]  K. Kinemuchi,et al.  ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS , 2012, 1201.5424.

[40]  M. R. Haas,et al.  TRANSIT TIMING OBSERVATIONS FROM KEPLER. IV. CONFIRMATION OF FOUR MULTIPLE-PLANET SYSTEMS BY SIMPLE PHYSICAL MODELS , 2012, 1201.5415.

[41]  Batavia,et al.  Transit timing observations from Kepler - III. : Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations , 2012, 1201.5412.

[42]  Howard Isaacson,et al.  KEPLER-20: A SUN-LIKE STAR WITH THREE SUB-NEPTUNE EXOPLANETS AND TWO EARTH-SIZE CANDIDATES , 2011, 1112.4514.

[43]  Jie Li,et al.  Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR , 2011, The Astrophysical Journal.

[44]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[45]  E. Ford,et al.  KEPLER-15b: A HOT JUPITER ENRICHED IN HEAVY ELEMENTS AND THE FIRST KEPLER MISSION PLANET CONFIRMED WITH THE HOBBY–EBERLY TELESCOPE , 2011 .

[46]  Sara Seager,et al.  LACK OF INFLATED RADII FOR KEPLER GIANT PLANET CANDIDATES RECEIVING MODEST STELLAR IRRADIATION , 2011, 1110.6180.

[47]  William F. Welsh,et al.  DETECTION OF KOI-13.01 USING THE PHOTOMETRIC ORBIT , 2011, 1110.3510.

[48]  Avi Shporer,et al.  MEASUREMENT OF THE SPIN–ORBIT MISALIGNMENT OF KOI-13.01 FROM ITS GRAVITY-DARKENED KEPLER TRANSIT LIGHTCURVE , 2011, 1110.3514.

[49]  Howard Isaacson,et al.  KEPLER-18b, c, AND d: A SYSTEM OF THREE PLANETS CONFIRMED BY TRANSIT TIMING VARIATIONS, LIGHT CURVE VALIDATION, WARM-SPITZER PHOTOMETRY, AND RADIAL VELOCITY MEASUREMENTS , 2011, 1110.0820.

[50]  Wesley A. Traub,et al.  TERRESTRIAL, HABITABLE-ZONE EXOPLANET FREQUENCY FROM KEPLER , 2011, 1109.4682.

[51]  M. R. Haas,et al.  DISCOVERY AND ATMOSPHERIC CHARACTERIZATION OF GIANT PLANET KEPLER-12b: AN INFLATED RADIUS OUTLIER , 2011, 1109.1611.

[52]  Jie Li,et al.  THE KEPLER-19 SYSTEM: A TRANSITING 2.2 R⊕ PLANET AND A SECOND PLANET DETECTED VIA TRANSIT TIMING VARIATIONS , 2011, 1109.1561.

[53]  F. Fressin,et al.  KEPLER-14b: A MASSIVE HOT JUPITER TRANSITING AN F STAR IN A CLOSE VISUAL BINARY , 2011, 1106.5510.

[54]  S. Tremaine,et al.  THE STATISTICS OF MULTI-PLANET SYSTEMS , 2011, 1106.5403.

[55]  K. Kinemuchi,et al.  KEPLER-10 c: A 2.2 EARTH RADIUS TRANSITING PLANET IN A MULTIPLE SYSTEM , 2011, 1105.4647.

[56]  H. Lehmann,et al.  ASYMMETRIC TRANSIT CURVES AS INDICATION OF ORBITAL OBLIQUITY: CLUES FROM THE LATE-TYPE DWARF COMPANION IN KOI-13 , 2011, 1105.2524.

[57]  A. Youdin THE EXOPLANET CENSUS: A GENERAL METHOD APPLIED TO KEPLER , 2011, 1105.1782.

[58]  E. Ford,et al.  A FIRST COMPARISON OF KEPLER PLANET CANDIDATES IN SINGLE AND MULTIPLE SYSTEMS , 2011, 1103.3896.

[59]  M. Shao,et al.  THE OCCURRENCE RATE OF EARTH ANALOG PLANETS ORBITING SUN-LIKE STARS , 2011, 1103.1443.

[60]  William F. Welsh,et al.  KEPLER ECLIPSING BINARY STARS. II. 2165 ECLIPSING BINARIES IN THE SECOND DATA RELEASE , 2011, 1103.1659.

[61]  Timothy M. Brown,et al.  KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION , 2011, 1102.0342.

[62]  F. Fressin,et al.  THE ATMOSPHERES OF THE HOT-JUPITERS KEPLER-5b AND KEPLER-6b OBSERVED DURING OCCULTATIONS WITH WARM-SPITZER AND KEPLER , 2011, 1102.0555.

[63]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[64]  F. Fressin,et al.  A closely packed system of low-mass, low-density planets transiting Kepler-11 , 2011, Nature.

[65]  John Asher Johnson,et al.  ON THE LOW FALSE POSITIVE PROBABILITIES OF KEPLER PLANET CANDIDATES , 2011, 1101.5630.

[66]  D. Ehrenreich,et al.  Transit spectrophotometry of the exoplanet HD 189733b - II. New Spitzer observations at 3.6 μm , 2010, 1008.2481.

[67]  Howard Isaacson,et al.  Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations , 2010, Science.

[68]  Howard Isaacson,et al.  MODELING KEPLER TRANSIT LIGHT CURVES AS FALSE POSITIVES: REJECTION OF BLEND SCENARIOS FOR KEPLER-9, AND VALIDATION OF KEPLER-9 d, A SUPER-EARTH-SIZE PLANET IN A MULTIPLE SYSTEM , 2010, 1008.4393.

[69]  Sara Seager,et al.  KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE , 2010, 1006.2815.

[70]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[71]  John C. Geary,et al.  KEPLER-4b: A HOT NEPTUNE-LIKE PLANET OF A G0 STAR NEAR MAIN-SEQUENCE TURNOFF , 2010, 1001.0604.

[72]  Howard Isaacson,et al.  DISCOVERY AND ROSSITER–McLAUGHLIN EFFECT OF EXOPLANET KEPLER-8b , 2010, 1001.0416.

[73]  A. Prsa,et al.  PRE-SPECTROSCOPIC FALSE-POSITIVE ELIMINATION OF KEPLER PLANET CANDIDATES , 2010, 1001.0392.

[74]  D. A. Caldwell,et al.  SELECTION, PRIORITIZATION, AND CHARACTERISTICS OF KEPLER TARGET STARS , 2010, 1001.0349.

[75]  T. Owen,et al.  KEPLER MISSION DESIGN, REALIZED PHOTOMETRIC PERFORMANCE, AND EARLY SCIENCE , 2010, 1001.0268.

[76]  Jessie L. Dotson,et al.  THE KEPLER PIXEL RESPONSE FUNCTION , 2010, 1001.0331.

[77]  M. R. Haas,et al.  INITIAL CHARACTERISTICS OF KEPLER LONG CADENCE DATA FOR DETECTING TRANSITING PLANETS , 2010, 1001.0256.

[78]  John C. Geary,et al.  INSTRUMENT PERFORMANCE IN KEPLER's FIRST MONTHS , 2010, 1001.0216.

[79]  G. Handler,et al.  Kepler Asteroseismology Program: Introduction and First Results , 2009, 1001.0139.

[80]  D. A. Caldwell,et al.  INITIAL CHARACTERISTICS OF KEPLER SHORT CADENCE DATA , 2009, 1001.0142.

[81]  R. Paul Butler,et al.  DISCOVERY OF A TRANSITING PLANET AND EIGHT ECLIPSING BINARIES IN HATNet FIELD G205 , 2009 .

[82]  P. Gondoin,et al.  The CoRoT space mission : early results Special feature Planetary transit candidates in the CoRoT initial run : resolving their nature , 2009 .

[83]  D. Ehrenreich,et al.  SEARCH FOR CARBON MONOXIDE IN THE ATMOSPHERE OF THE TRANSITING EXOPLANET HD 189733b , 2009, 0903.3405.

[84]  R. Paul Butler,et al.  HATNet Field G205: Follow-Up Observations of 28 Transiting-Planet candidates and Confirmation of the Planet HAT-P-8b , 2008, 0812.1161.

[85]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[86]  M. Holman,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 IMPROVED PARAMETERS FOR EXTRASOLAR TRANSITING PLANETS , 2008 .

[87]  Carnegie,et al.  HAT-P-1b: A Large-Radius, Low-Density Exoplanet Transiting One Member of a Stellar Binary , 2006, astro-ph/0609369.

[88]  Martin G. Cohen,et al.  Absolute Calibration of the Infrared Array Camera on the Spitzer Space Telescope , 2005, astro-ph/0507139.

[89]  E. Hatziminaoglou,et al.  Star counts in the Galaxy - Simulating from very deep to very shallow photometric surveys with the TRILEGAL code , 2005, astro-ph/0504047.

[90]  R. Gilliland,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005, astro-ph/0503457.

[91]  Matthew J. Holman,et al.  The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets , 2005, Science.

[92]  J. Jackson Wiley Series in Probability and Mathematical Statistics , 2004 .

[93]  T. Brown,et al.  TrES-1: The Transiting Planet of a Bright K0 V Star , 2004, astro-ph/0408421.

[94]  S. Jha,et al.  Testing Blend Scenarios for Extrasolar Transiting Planet Candidates. I. OGLE-TR-33: A False Positive , 2004, astro-ph/0406627.

[95]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[96]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[97]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003, astro-ph/0401052.

[98]  Timothy M. Brown,et al.  Expected Detection and False Alarm Rates for Transiting Jovian Planets , 2003, astro-ph/0307256.

[99]  E. Ford Quantifying the Uncertainty in the Orbits of Extrasolar Planets , 2003, astro-ph/0305441.

[100]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[101]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[102]  S. Seager,et al.  A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve , 2002, astro-ph/0206228.

[103]  L. Girardi,et al.  Theoretical isochrones in several photometric systems I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets , 2002, astro-ph/0205080.

[104]  Bernhard R. Brandl,et al.  PHARO: A Near‐Infrared Camera for the Palomar Adaptive Optics System , 2001 .

[105]  James Roger P. Angel,et al.  ARIES: Arizona infrared imager and echelle spectrograph , 1998, Astronomical Telescopes and Instrumentation.

[106]  A. Jaffe,et al.  Comparing cosmic microwave background datasets , 1998, astro-ph/9803272.