Physically-based simulation of ice formation

The geometric and optical complexity of ice has been a constant source of wonder and inspiration for scientists and artists. It is a defining seasonal characteristic, so modeling it convincingly is a crucial component of any synthetic winter scene. Like wind and fire, it is also considered elemental, so it has found considerable use as a dramatic tool in visual effects. However, its complex appearance makes it difficult for an artist to model by hand, so physically-based simulation methods are necessary. In this dissertation, I present several methods for visually simulating ice formation. A general description of ice formation has been known for over a hundred years and is referred to as the Stefan Problem. There is no known general solution to the Stefan Problem, but several numerical methods have successfully simulated many of its features. I will focus on three such methods in this dissertation: phase field methods, diffusion limited aggregation, and level set methods. Many different variants of the Stefan problem exist, and each presents unique challenges. Phase field methods excel at simulating the Stefan problem with surface tension anisotropy. Surface tension gives snowflakes their characteristic six arms, so phase field methods provide a way of simulating medium scale detail such as frost and snowflakes. However, phase field methods track the ice as an implicit surface, so it tends to smear away small-scale detail. In order to restore this detail, I present a hybrid method that combines phase fields with diffusion limited aggregation (DLA). DLA is a fractal growth algorithm that simulates the quasi-steady state, zero surface tension Stefan problem, and does not suffer from smearing problems. I demonstrate that combining these two algorithms can produce visual features that neither method could capture alone. Finally, I present a method of simulating icicle formation. Icicle formation corresponds to the thin-film, quasi-steady state Stefan problem, and neither phase fields nor DLA are directly applicable. I instead use level set methods, an alternate implicit front tracking strategy. I derive the necessary velocity equations for level set simulation, and also propose an efficient method of simulating ripple formation across the surface of the icicles.

[1]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[2]  Gunduz Caginalp,et al.  Phase field equations in the singular limit of sharp interface problems , 1992 .

[3]  Paul Meakin,et al.  Diffusion-controlled cluster formation in two, three, and four dimensions , 1983 .

[4]  Paul Fearing,et al.  Computer modelling of fallen snow , 2000, SIGGRAPH.

[5]  Nagatani,et al.  Morphological changes in convection-diffusion-limited deposition. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[6]  W. J. Humphreys Snow Crystals , 1962 .

[7]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[8]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[9]  Robert Walker Sumner,et al.  Pattern formation in lichen , 2001 .

[10]  Shang‐keng Ma,et al.  Renormalization-group methods for critical dynamics: II. Detailed analysis of the relaxational models , 1976 .

[11]  M. B. Hastings,et al.  Laplacian growth as one-dimensional turbulence , 1998 .

[12]  V. I. Mel’nikov,et al.  Two-dimensional dendritic growth at arbitrary Peclet number , 1990 .

[13]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[14]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[15]  B. L. Messinger Equilibrium Temperature of an Unheated Icing Surface as a Function of Air Speed , 1953 .

[16]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[17]  R. Fedkiw,et al.  A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem , 2005 .

[18]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[19]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[20]  Eshel Ben-Jacob,et al.  Dynamics of Interfacial Pattern Formation , 1983 .

[21]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[22]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[23]  Min Chen,et al.  A New Approach to the Construction of Surfaces from Contour Data , 1994, Comput. Graph. Forum.

[24]  Anselmo Lastra,et al.  Physically-based visual simulation on graphics hardware , 2002, HWWS '02.

[25]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[26]  Gretar Tryggvason,et al.  Numerical simulation of dendritic solidification with convection: two-dimensional geometry , 2002 .

[27]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[28]  Jos Stam,et al.  Diffraction shaders , 1999, SIGGRAPH.

[29]  Duc Quang Nguyen,et al.  Directable photorealistic liquids , 2004, SCA '04.

[30]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[31]  H E Stanley,et al.  Non-deterministic approach to anisotropic growth patterns with continuously tunable morphology: the fractal properties of some real snowflakes , 1987 .

[32]  Yukio Saito,et al.  Statistical physics of crystal growth , 1996 .

[33]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[34]  K. Ueno Pattern formation in crystal growth under parabolic shear flow. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  J. Sethian,et al.  A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography III: Re-Deposition, , 1997 .

[36]  Eshel Ben-Jacob,et al.  Boundary-layer model of pattern formation in solidification , 1984 .

[37]  Hayden Landis,et al.  Production-Ready Global Illumination , 2004 .

[38]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[39]  Donald M. Anderson,et al.  A phase-field model of solidification with convection , 2000 .

[40]  Susan Goldhor,et al.  Micrographia , 1963, The Yale Journal of Biology and Medicine.

[41]  M. Hastings,et al.  Fractal to nonfractal phase transition in the dielectric breakdown model. , 2001, Physical review letters.

[42]  Tamás Vicsek,et al.  Pattern Formation in Diffusion-Limited Aggregation , 1984 .

[43]  E. Bodenschatz,et al.  Focus on Pattern Formation , 2003 .

[44]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[45]  Hujun Bao,et al.  Visual simulation of weathering by γ-ton tracing , 2005, SIGGRAPH 2005.

[46]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[47]  Edward P. Lozowski,et al.  An analytical model of icicle growth , 1994 .

[48]  L. Sander Diffusion-limited aggregation: A kinetic critical phenomenon? , 2000 .

[49]  Arie E. Kaufman,et al.  Melting and flowing of viscous volumes , 2003, Proceedings 11th IEEE International Workshop on Program Comprehension.

[50]  Ronald Fedkiw,et al.  A Level Set Approach for the Numerical Simulation of Dendritic Growth , 2003, J. Sci. Comput..

[51]  Philippe Beaudoin,et al.  Particle-based viscoelastic fluid simulation , 2005, SCA '05.

[52]  James F. O'Brien,et al.  Animating gases with hybrid meshes , 2005, ACM Trans. Graph..

[53]  Srikanth Sastry,et al.  SINGULARITY-FREE INTERPRETATION OF THE THERMODYNAMICS OF SUPERCOOLED WATER , 1996 .

[54]  Lasse Makkonen,et al.  Growth rates of icicles , 1994 .

[55]  J. Wettlaufer The Stefan Problem : Polar Exploration and the Mathematics of Moving Boundaries , 2001 .

[56]  P. Prusinkiewicz,et al.  Modeling and visualization of leaf venation patterns , 2005, SIGGRAPH 2005.

[57]  A. Karma,et al.  Regular Article: Modeling Melt Convection in Phase-Field Simulations of Solidification , 1999 .

[58]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[59]  F. Frank Early Discoverers XXXI: Descartes’ Observations on the Amsterdam Snowfalls of 4, 5, 6 and 9 February 1635 , 1974, Journal of Glaciology.

[60]  R. Sekerka,et al.  Stability of a Planar Interface During Solidification of a Dilute Binary Alloy , 1964 .

[61]  Ágnes Buka,et al.  Patterns in the Bulk and at the Interface of Liquid Crystals , 2001 .

[62]  Frank Losasso,et al.  Simulating water and smoke with an octree data structure , 2004, SIGGRAPH 2004.

[63]  Julie Dorsey,et al.  Rendering of Wet Materials , 1999, Rendering Techniques.

[64]  Henrik Wann Jensen,et al.  Light diffusion in multi-layered translucent materials , 2005, ACM Trans. Graph..

[65]  N. Goldenfeld,et al.  Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures , 1998, cond-mat/9808216.

[66]  James C Baygents,et al.  Stalactite growth as a free-boundary problem: a geometric law and its platonic ideal. , 2005, Physical review letters.

[67]  Michael Griebel,et al.  Numerical Simulation in Fluid Dynamics: A Practical Introduction , 1997 .

[68]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[69]  Jakob Gonczarowski,et al.  A physically based model for icicle growth , 2005, The Visual Computer.

[70]  David L. Chopp,et al.  Some Improvements of the Fast Marching Method , 2001, SIAM J. Sci. Comput..

[71]  Mark Carlson,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, SIGGRAPH 2004.

[72]  Ming C. Lin,et al.  Visual simulation of ice crystal growth , 2003, SCA '03.

[73]  Andrew Witkin,et al.  Reaction-diffusion textures , 1991, SIGGRAPH.

[74]  Tien-Tsin Wong,et al.  Sampling with Hammersley and Halton Points , 1997, J. Graphics, GPU, & Game Tools.

[75]  Andy Goldsworthy: A Collaboration with Nature , 1990 .

[76]  Surface instability of icicles. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  J. Sethian,et al.  Crystal growth and dendritic solidification , 1992 .

[78]  Samir Akkouche,et al.  Simulating and modeling lichen growth , 2004, Comput. Graph. Forum.

[79]  James M. Hill,et al.  One-Dimensional Stefan Problems: An Introduction , 1987 .

[80]  Yoshinori Dobashi,et al.  A Modeling and Rendering Method for Snow by Using Metaballs , 1997, Comput. Graph. Forum.

[81]  Dinesh Manocha,et al.  CULLIDE: interactive collision detection between complex models in large environments using graphics hardware , 2003, HWWS '03.

[82]  Michael S. Langer,et al.  A Spectral-particle hybrid method for rendering falling snow , 2004, Rendering Techniques.

[83]  Dinesh Manocha,et al.  LU-GPU: Efficient Algorithms for Solving Dense Linear Systems on Graphics Hardware , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[84]  J. Sethian,et al.  A level set approach to a unified model for etching, deposition, and lithography II: three-dimensional simulations , 1995 .

[85]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[86]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[87]  Tamás Vicsek,et al.  Deterministic growth model of pattern formation in dendritic solidification , 1987 .

[88]  Ukichiro Nakaya,et al.  Snow Crystals , 2014 .

[89]  H. V. Koch Une méthode géométrique élémentaire pour l’étude de certaines questions de la théorie des courbes planes , 1906 .

[90]  D. W. Hammond,et al.  Ice and water film growth from incoming supercooled droplets , 1999 .

[91]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[92]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[93]  P. Hanrahan,et al.  Flow and changes in appearance , 2005, SIGGRAPH Courses.

[94]  Z. Popovic,et al.  Fluid control using the adjoint method , 2004, SIGGRAPH 2004.

[95]  D. Jou,et al.  Thermodynamics of Fluids Under Flow , 2000 .

[96]  Pattern formation in crystal growth under parabolic shear flow. II. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  Toussaint,et al.  Deposition of particles in a two-dimensional lattice gas flow. , 1992, Physical review letters.

[98]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[99]  M. Eden A Two-dimensional Growth Process , 1961 .

[100]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[101]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[102]  Roberts,et al.  Growth in non-Laplacian fields. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[103]  V A Bogoyavlenskiy,et al.  Mean-field diffusion-limited aggregation: a "density" model for viscous fingering phenomena. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[104]  Antonio Fasano,et al.  Free boundary problems : theory and applications , 1983 .

[105]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[106]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[107]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[108]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[109]  Herbert B. Nichols Snow Crystals: Natural and Artificial. Ukichiro Nakaya. Harvard Univ. Press, Cambridge, 1954. xii +510 pp. Illus. $10 , 1954 .

[110]  R. Kobayashi Modeling and numerical simulations of dendritic crystal growth , 1993 .

[111]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[112]  G. Taylor,et al.  The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[113]  Jesús Ildefonso Díaz Díaz Free boundary problems : theory and applications , 1995 .

[114]  Dinesh Manocha,et al.  DiFi: Fast 3D Distance Field Computation Using Graphics Hardware , 2004, Comput. Graph. Forum.

[115]  L. Pietronero,et al.  Fractal Dimension of Dielectric Breakdown , 1984 .

[116]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[117]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[118]  Carl J. G. Evertsz,et al.  The potential distribution around growing fractal clusters , 1990, Nature.

[119]  Alain Karma,et al.  Multiscale finite-difference-diffusion-Monte-Carlo method for simulating dendritic solidification , 2000 .

[120]  R. Ball,et al.  Large scale lattice effect in diffusion-limited aggregation , 1985 .

[121]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[122]  P. Schröder,et al.  Sparse matrix solvers on the GPU: conjugate gradients and multigrid , 2003, SIGGRAPH Courses.

[123]  D. J. Benney Long Waves on Liquid Films , 1966 .

[124]  Hujun Bao,et al.  Visual simulation of weathering by γ-ton tracing , 2005, ACM Trans. Graph..

[125]  A. M. Meirmanov,et al.  The Stefan Problem , 1992 .

[126]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[127]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[128]  L. Makkonen A model of icicle growth , 1988 .

[129]  Sastry,et al.  Singularity-free interpretation of the thermodynamics of supercooled water. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[130]  Kuroda,et al.  Pattern formation in growth of snow crystals occurring in the surface kinetic process and the diffusion process. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[131]  Pat Hanrahan,et al.  Modeling and rendering of metallic patinas , 1996, SIGGRAPH.

[132]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.