Dynamic control of function by light-driven molecular motors

Light-driven artificial molecular switches and motors afford dynamic control of various molecular systems, ranging from catalytic to biological. This Perspective provides insight into the challenges that must be addressed to transition the field from the proof-of-concept stage to realization of its myriad applications.

[1]  Francesco Zerbetto,et al.  Macroscopic transport by synthetic molecular machines , 2005, Nature materials.

[2]  Gooitzen M van Dam,et al.  Emerging Targets in Photopharmacology. , 2016, Angewandte Chemie.

[3]  Kelong Zhu,et al.  A molecular shuttle that operates inside a metal-organic framework. , 2015, Nature chemistry.

[4]  Il Yoon,et al.  Advance in Photosensitizers and Light Delivery for Photodynamic Therapy , 2013, Clinical endoscopy.

[5]  Yan Wang,et al.  Light‐Driven Chiral Molecular Switches or Motors in Liquid Crystals , 2012, Advanced materials.

[6]  E. W. Meijer,et al.  Amplification of chirality in dynamic supramolecular aggregates. , 2007, Angewandte Chemie.

[7]  B. Feringa,et al.  Driving unidirectional molecular rotary motors with visible light by intra- and intermolecular energy transfer from palladium porphyrin. , 2012, Journal of the American Chemical Society.

[8]  T. Osa,et al.  Photoregulation of catalytic activity of β-cyclodextrin by an azo inhibitor , 1980 .

[9]  Katsuhiro Maeda,et al.  Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. , 2016, Chemical reviews.

[10]  Ben L Feringa,et al.  Dynamic Control of Chiral Space in a Catalytic Asymmetric Reaction Using a Molecular Motor , 2011, Science.

[11]  Ben L Feringa,et al.  The art of building small: from molecular switches to molecular motors. , 2007, The Journal of organic chemistry.

[12]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[13]  B. Feringa,et al.  Dynamic control of chirality and self-assembly of double-stranded helicates with light. , 2017, Nature chemistry.

[14]  Patrick Couvreur,et al.  Stimuli-responsive nanocarriers for drug delivery. , 2013, Nature materials.

[15]  B. Feringa,et al.  Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. , 2007, Angewandte Chemie.

[16]  Mounir Maaloum,et al.  Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. , 2015, Nature nanotechnology.

[17]  B. Feringa,et al.  Dynamic Responsive Systems for Catalytic Function. , 2016, Chemistry.

[18]  Nathalie Katsonis,et al.  Rotational reorganization of doped cholesteric liquid crystalline films. , 2006, Journal of the American Chemical Society.

[19]  B. Feringa,et al.  Amphiphilic Molecular Motors for Responsive Aggregation in Water. , 2016, Journal of the American Chemical Society.

[20]  Stefan Hecht,et al.  Photoswitches: From Molecules to Materials , 2010, Advanced materials.

[21]  B. Feringa,et al.  Dynamic Inversion of Stereoselective Phosphate Binding to a Bisurea Receptor Controlled by Light and Heat. , 2016, Angewandte Chemie.

[22]  Wesley R. Browne,et al.  Control of surface wettability using tripodal light-activated molecular motors. , 2014, Journal of the American Chemical Society.

[23]  C. Bielawski,et al.  Switchable Polymerization Catalysts. , 2016, Chemical reviews.

[24]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[25]  D. Leigh,et al.  Artificial switchable catalysts. , 2015, Chemical Society reviews.

[26]  Wiktor Szymanski,et al.  Photopharmacology: beyond proof of principle. , 2014, Journal of the American Chemical Society.

[27]  Depeng Zhao,et al.  Dynamic control of chirality in phosphine ligands for enantioselective catalysis , 2015, Nature Communications.

[28]  Nathalie Katsonis,et al.  Molecular machines: Nanomotor rotates microscale objects , 2006, Nature.

[29]  B. Feringa,et al.  Dual stereocontrol over the Henry reaction using a light- and heat-triggered organocatalyst. , 2014, Chemical communications.

[30]  Jos C. M. Kistemaker,et al.  Locked synchronous rotor motion in a molecular motor , 2017, Science.

[31]  Antoine Goujon,et al.  Dual-light control of nanomachines that integrate motor and modulator subunits. , 2017, Nature nanotechnology.

[32]  D. Trauner,et al.  A roadmap to success in photopharmacology. , 2015, Accounts of Chemical Research.

[33]  B. Feringa,et al.  Control of dynamic helicity at the macro- and supramolecular level. , 2008, Soft matter.

[34]  Nathalie Katsonis,et al.  Synthetic light-activated molecular switches and motors on surfaces , 2007 .

[35]  B. Feringa,et al.  Allosteric Regulation of the Rotational Speed in a Light-Driven Molecular Motor , 2016, Journal of the American Chemical Society.

[36]  B. Feringa,et al.  Visible-Light-Driven Photoisomerization and Increased Rotation Speed of a Molecular Motor Acting as a Ligand in a Ruthenium(II) Complex. , 2015, Angewandte Chemie.

[37]  J. Siegel,et al.  Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: structure of an inorganic double helix. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Ferrarini,et al.  Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications. , 2011, Chemical Society reviews.

[39]  Ben L. Feringa,et al.  Unidirectional molecular motor on a gold surface , 2005, Nature.

[40]  Bartosz A Grzybowski,et al.  Nanoparticles functionalised with reversible molecular and supramolecular switches. , 2010, Chemical Society reviews.

[41]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[42]  David A Leigh,et al.  Artificial molecular motors. , 2017, Chemical Society reviews.

[43]  Ben L Feringa,et al.  Amplification of chirality in liquid crystals. , 2006, Organic & biomolecular chemistry.

[44]  S. Hecht,et al.  Artificial light-gated catalyst systems. , 2010, Angewandte Chemie.

[45]  N. C. Peterson,et al.  A Helical Polymer with a Cooperative Response to Chiral Information , 1995, Science.

[46]  C. Rogers,et al.  Surface Inclusion of Unidirectional Molecular Motors in Hexagonal Tris(o-phenylene)cyclotriphosphazene. , 2017, Journal of the American Chemical Society.

[47]  D. Qu,et al.  Controlling molecular rotary motion with a self-complexing lock. , 2010, Angewandte Chemie.

[48]  Nathalie Katsonis,et al.  Controlling chirality with helix inversion in cholesteric liquid crystals , 2012 .

[49]  Pierre Gaspard,et al.  From non-covalent assemblies to molecular machines , 2010 .

[50]  Auke Meetsma,et al.  A donor-acceptor substituted molecular motor: unidirectional rotation driven by visible light. , 2003, Organic & biomolecular chemistry.

[51]  Massimo Olivucci,et al.  Designing conical intersections for light-driven single molecule rotary motors: from precessional to axial motion. , 2014, The Journal of organic chemistry.

[52]  John M. Beierle,et al.  Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. , 2013, Chemical reviews.

[53]  C. Bielawski,et al.  Illuminating Photoswitchable Catalysis , 2013 .

[54]  I. Aprahamian,et al.  Hydrazone Switch-Based Negative Feedback Loop. , 2016, Journal of the American Chemical Society.

[55]  Xiang Ma,et al.  Photoresponsive Host-Guest Functional Systems. , 2015, Chemical reviews.

[56]  C. Yu,et al.  Enantiodivergent Steglich rearrangement of O-carboxylazlactones catalyzed by a chirality switchable helicene containing a 4-aminopyridine unit† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02646j Click here for additional data file. , 2016, Chemical science.

[57]  Chien-Tien Chen,et al.  Complementary helicity interchange of optically switchable supramolecular-enantiomeric helicenes with (-)-gel-sol-(+)-gel transition ternary logic. , 2013, Journal of the American Chemical Society.

[58]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[59]  Jos C. M. Kistemaker,et al.  Multi-state regulation of the dihydrogen phosphate binding affinity to a light- and heat-responsive bis-urea receptor. , 2014, Journal of the American Chemical Society.