Reusable PdO/Al2O3–Nd2O3 photocatalysts in the UV photodegradation of phenol

[1]  E. Muccillo,et al.  Influence of neodymium ions on photocatalytic activity of TiO2 synthesized by sol–gel and precipitation methods , 2011 .

[2]  R. Gómez,et al.  Degradation of the herbicide 2,4-dichlorophenoxyacetic acid over TiO2–CeO2 sol–gel photocatalysts: Effect of the annealing temperature on the photoactivity , 2011 .

[3]  R. Gómez,et al.  Synthesis and characterization of TiO2 doping with rare earths by sol–gel method: photocatalytic activity for phenol degradation , 2010 .

[4]  B. Shahmoradi,et al.  Photocatalytic treatment of municipal wastewater using modified neodymium doped TiO2 hybrid nanoparticles , 2010, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[5]  R. Gómez,et al.  Photodegradation of phenol and cresol in aqueous medium by using Zn/Al + Fe mixed oxides obtained from layered double hydroxides materials , 2010 .

[6]  B. Hameed,et al.  The advancements in sol–gel method of doped-TiO2 photocatalysts , 2010 .

[7]  F. Beltrán,et al.  Photocatalytic degradation of organics in water in the presence of iron oxides: Influence of carboxylic acids , 2009 .

[8]  R. López,et al.  PHOTOPHYSICAL AND PHOTOCATALYTIC PROPERTIES OF NANOSIZED COPPER-DOPED TITANIA SOL-GEL CATALYSTS , 2009 .

[9]  L. Torres-Martínez,et al.  Sol-gel silver hexatitanates as photocatalysts for the 4-chlorophenol decomposition , 2009 .

[10]  R. Gómez,et al.  Adsorption and photocatalytic degradation of phenol and 2,4 dichlorophenoxiacetic acid by Mg–Zn–Al layered double hydroxides , 2009 .

[11]  Xin Li,et al.  Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 nanotubes , 2009 .

[12]  Fu-ping Wang,et al.  Comparative study of lanthanide oxide doped titanium dioxide photocatalysts prepared by coprecipitation and sol–gel process , 2009 .

[13]  G. Busca,et al.  Technologies for the removal of phenol from fluid streams: a short review of recent developments. , 2008, Journal of hazardous materials.

[14]  Ming Lin,et al.  Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2) via a sol–gel method , 2008 .

[15]  R. Juang,et al.  Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process , 2008 .

[16]  B. Pourabbas,et al.  Preparation of MoS2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS2/TiO2 hybrids in photo-oxidation of phenol , 2008 .

[17]  K. Kumar,et al.  Comments on “Photocatalytic properties of TiO2 modified with platinum and silver nanoparticles in the degradation of oxalic acid in aqueous solution”: Langmuir Hinshelwood kinetics—A theoretical study , 2008 .

[18]  V. Rodríguez-González,et al.  Slurry photodegradation of 2,4-dichlorophenoxyacetic acid: A comparative study of impregnated and sol–gel In2O3–TiO2 mixed oxide catalysts , 2008 .

[19]  Fangbai Li,et al.  Heterogeneous photodegradation of bisphenol A with iron oxides and oxalate in aqueous solution. , 2007, Journal of colloid and interface science.

[20]  Ioannis Konstantinou,et al.  Structure and photocatalytic performance of TiO2/clay nanocomposites for the degradation of dimethachlor , 2007 .

[21]  T.X. Liu,et al.  Effect of Oxalate on Photodegradation of Bisphenol A at the Interface of Different Iron Oxides , 2007 .

[22]  T. Engelhardt,et al.  ZnAl-layer double hydroxides as photocatalysts for oxidation of phenol in aqueous solution , 2005 .

[23]  M. Skotak,et al.  Characterization and catalytic activity of differently pretreated Pd/Al2O3 catalysts: the role of acid sites and of palladium–alumina interactions , 2004 .

[24]  S. Bekkouche,et al.  Study of photocatalytic degradation of phenol , 2004 .

[25]  M. Nagai,et al.  Effect of addition of Nd2O3 and La2O3 to PdO/Al2O3 in catalytic combustion of methane , 2003 .

[26]  N. Bogdanchikova,et al.  Influence of modifying additives on the electronic state of supported palladium , 2003 .

[27]  S. Esplugas,et al.  Comparison of different advanced oxidation processes for phenol degradation. , 2002, Water research.

[28]  Weber,et al.  Resonance-Raman and lattice-dynamics studies of single-crystal PdO. , 1991, Physical review. B, Condensed matter.

[29]  F. Oudet,et al.  Thermal stabilization of transition alumina by structural coherence with LnAlO3 (Ln = La, Pr, Nd) , 1988 .

[30]  R. Gómez,et al.  Photodegradation of 2,4-D over PdO/Al2O3–Nd2O3 photocatalysts prepared by the sol–gel method , 2012 .

[31]  Maxim Lyubovsky,et al.  Complete methane oxidation over Pd catalyst supported on α-alumina. Influence of temperature and oxygen pressure on the catalyst activity , 1999 .