A Variational Framework for Region-Based Segmentation Incorporating Physical Noise Models

Image segmentation is one of the fundamental problems in computer vision and image processing. In the recent years mathematical models based on partial differential equations and variational methods have led to superior results in many applications, e.g., medical imaging. A majority of works on image segmentation implicitly assume the given image to be biased by additive Gaussian noise, for instance the popular Mumford-Shah model. Since this assumption is not suitable for a variety of problems, we propose a region-based variational segmentation framework to segment also images with non-Gaussian noise models. Motivated by applications in biomedical imaging, we discuss the cases of Poisson and multiplicative speckle noise intensively. Analytical results such as the existence of a solution are verified and we investigate the use of different regularization functionals to provide a-priori information regarding the expected solution. The performance of the proposed framework is illustrated by experimental results on synthetic and real data.

[1]  G. Burton Sobolev Spaces , 2013 .

[2]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[3]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[4]  M. Bertero,et al.  Iterative image reconstruction : a point of view , 2007 .

[5]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[6]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[7]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[8]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[9]  R. Anderssen,et al.  Joint additive Kullback–Leibler residual minimization and regularization for linear inverse problems , 2007 .

[10]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[11]  Rachid Deriche,et al.  A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape , 2007, International Journal of Computer Vision.

[12]  Henri Lantéri,et al.  Restoration of Astrophysical Images—The Case of Poisson Data with Additive Gaussian Noise , 2005, EURASIP J. Adv. Signal Process..

[13]  Luminita A. Vese,et al.  Energy Minimization Based Segmentation and Denoising Using a Multilayer Level Set Approach , 2005, EMMCVPR.

[14]  D. Cremers Convex Relaxation Techniques for Segmentation , Stereo and Multiview Reconstruction , 2010 .

[15]  Xavier Bresson,et al.  Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction , 2010, J. Sci. Comput..

[16]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[17]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[18]  Siegfried Eckert,et al.  Angiographic assessment of cardiac allograft vasculopathy: results of a Consensus Conference of the Task Force for Thoracic Organ Transplantation of the German Cardiac Society , 2010, Transplant international : official journal of the European Society for Organ Transplantation.

[19]  Christoph Schnörr,et al.  Convex optimization for multi-class image labeling with a novel family of total variation based regularizers , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[20]  R. Gorenflo,et al.  Multi-index Mittag-Leffler Functions , 2014 .

[21]  Jean-François Aujol,et al.  Some First-Order Algorithms for Total Variation Based Image Restoration , 2009, Journal of Mathematical Imaging and Vision.

[22]  Giuseppe Savaré,et al.  The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation , 2009 .

[23]  Xavier Bresson,et al.  Fast Global Minimization of the Active Contour/Snake Model , 2007, Journal of Mathematical Imaging and Vision.

[24]  Stochastic Relaxation , 2014, Computer Vision, A Reference Guide.

[25]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[26]  Philippe Réfrégier,et al.  Influence of the noise model on level set active contour segmentation , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Carola-Bibiane Schönlieb,et al.  Regularized Regression and Density Estimation based on Optimal Transport , 2012 .

[28]  Stanley Osher,et al.  Multiplicative Denoising and Deblurring: Theory and Algorithms , 2003 .

[29]  G. Aubert,et al.  Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (Applied Mathematical Sciences) , 2006 .

[30]  M Tur,et al.  When is speckle noise multiplicative? , 1982, Applied optics.

[31]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[32]  Robert E. Megginson An Introduction to Banach Space Theory , 1998 .

[33]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[34]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[35]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[36]  J. Alison Noble,et al.  Ultrasound image segmentation: a survey , 2006, IEEE Transactions on Medical Imaging.

[37]  S. Dietze Barbu, V./Precupanu, Th., Convexity and Optimization in Banach Spaces. Bucuresti. Editura Academiei. Alphen an de Rijn. Sijthoff & Noordhoff Intern. Publ. 1978. XI, 316 S., Dfl. 60.00. $ 28.00 , 1979 .

[38]  C. Lamberti,et al.  Maximum likelihood segmentation of ultrasound images with Rayleigh distribution , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[39]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[40]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[41]  Chunming Li,et al.  Level set evolution without re-initialization: a new variational formulation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[42]  Peter Smereka,et al.  Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion , 2003, J. Sci. Comput..

[43]  Kenneth R. Davidson,et al.  Convexity and Optimization , 2009 .

[44]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[45]  Alexander Ghanem,et al.  Triggered Replenishment Imaging Reduces Variability of Quantitative Myocardial Contrast Echocardiography and Allows Assessment of Myocardial Blood Flow Reserve , 2007, Echocardiography.

[46]  Christoph Peters,et al.  Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[48]  Bostjan Likar,et al.  A Review of Methods for Correction of Intensity Inhomogeneity in MRI , 2007, IEEE Transactions on Medical Imaging.

[49]  V. Barbu,et al.  Convexity and optimization in banach spaces , 1972 .

[50]  Christophe Chesnaud,et al.  Statistical Region Snake-Based Segmentation Adapted to Different Physical Noise Models , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  J. Craggs Applied Mathematical Sciences , 1973 .

[52]  Thomas J. Asaki,et al.  A Variational Approach to Reconstructing Images Corrupted by Poisson Noise , 2007, Journal of Mathematical Imaging and Vision.

[53]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[54]  T. Loupas,et al.  An adaptive weighted median filter for speckle suppression in medical ultrasonic images , 1989 .

[55]  M. Lassas,et al.  Hierarchical models in statistical inverse problems and the Mumford–Shah functional , 2009, 0908.3396.

[56]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[57]  Daniel Cremers,et al.  Convex Relaxation for Multilabel Problems with Product Label Spaces , 2010, ECCV.

[58]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[59]  Daniel Cremers,et al.  Global Solutions of Variational Models with Convex Regularization , 2010, SIAM J. Imaging Sci..

[60]  Christoph Schnörr,et al.  Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem , 2012, Journal of Mathematical Imaging and Vision.

[61]  A. Chambolle Practical, Unified, Motion and Missing Data Treatment in Degraded Video , 2004, Journal of Mathematical Imaging and Vision.

[62]  M Schwaiger,et al.  The clinical role of positron emission tomography in management of the cardiac patient. , 2000, Revista portuguesa de cardiologia : orgao oficial da Sociedade Portuguesa de Cardiologia = Portuguese journal of cardiology : an official journal of the Portuguese Society of Cardiology.

[63]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Level Set Segmentation with Multiple Regions Level Set Segmentation with Multiple Regions , 2022 .

[64]  Michael Brady,et al.  Segmentation of ultrasound B-mode images with intensity inhomogeneity correction , 2002, IEEE Transactions on Medical Imaging.

[65]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[66]  L. Shepp,et al.  A Statistical Model for Positron Emission Tomography , 1985 .

[67]  Daniel Cremers,et al.  A convex relaxation approach for computing minimal partitions , 2009, CVPR.

[68]  Victor Lempitsky,et al.  Proceedings of the 8th international conference on Energy minimization methods in computer vision and pattern recognition , 2011 .

[69]  Otmar Scherzer,et al.  Bivariate density estimation using BV regularisation , 2007, Comput. Stat. Data Anal..

[70]  J. Zerubia,et al.  3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization , 2004 .

[71]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[72]  Pushmeet Kohli,et al.  Markov Random Fields for Vision and Image Processing , 2011 .

[73]  Antonin Chambolle,et al.  The Discontinuity Set of Solutions of the TV Denoising Problem and Some Extensions , 2007, Multiscale Model. Simul..

[74]  I. Buvat,et al.  Partial-Volume Effect in PET Tumor Imaging* , 2007, Journal of Nuclear Medicine.

[75]  Kazufumi Ito,et al.  Lagrange multiplier approach to variational problems and applications , 2008, Advances in design and control.

[76]  C. Villani Topics in Optimal Transportation , 2003 .

[77]  Martin Burger,et al.  A nonlinear variational method for improved quantification of myocardial blood flow using dynamic H215O PET , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[78]  Ming Jiang,et al.  Mathematical methods in biomedical imaging and intensity-modulated radiation therapy (IMRT) , 2008 .

[79]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[80]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[81]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[82]  Carl-Fredrik Westin,et al.  Speckle-constrained filtering of ultrasound images , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[83]  Ornella Rimoldi,et al.  Absolute quantification of myocardial blood flow with H(2)(15)O and 3-dimensional PET: an experimental validation. , 2002, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[84]  M. Bandstra,et al.  Measurements of Fukushima fallout by the Berkeley Radiological Air and Water Monitoring project , 2011, 2011 IEEE Nuclear Science Symposium Conference Record.

[85]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[86]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[87]  M. Wernick,et al.  Emission Tomography: The Fundamentals of PET and SPECT , 2004 .

[88]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[89]  J. Aujol,et al.  Some algorithms for total variation based image restoration , 2008 .

[90]  Xiaoping Yang,et al.  A Variational Model to Remove the Multiplicative Noise in Ultrasound Images , 2010, Journal of Mathematical Imaging and Vision.

[91]  Rachid Deriche,et al.  Geodesic Active Regions: A New Framework to Deal with Frame Partition Problems in Computer Vision , 2002, J. Vis. Commun. Image Represent..

[92]  R. White,et al.  Image recovery from data acquired with a charge-coupled-device camera. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[93]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[94]  Tony F. Chan,et al.  Image processing and analysis , 2005 .

[95]  Jahn Müller,et al.  Total Variation Processing of Images with Poisson Statistics , 2009, CAIP.

[96]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .