Ultra-high thermoelectric performance in graphene incorporated Cu2Se: Role of mismatching phonon modes

[1]  D. D. Pollock Thermoelectric Phenomena , 2020, PHYSICAL PROPERTIES of MATERIALS for ENGINEERS 2ND EDITION.

[2]  Yue Chen,et al.  3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals , 2018, Science.

[3]  Matthew S. Dargusch,et al.  High Performance Thermoelectric Materials: Progress and Their Applications , 2018 .

[4]  G. J. Snyder,et al.  Significant enhancement of figure-of-merit in carbon-reinforced Cu2Se nanocrystalline solids , 2017 .

[5]  Terry M. Tritt,et al.  Advances in thermoelectric materials research: Looking back and moving forward , 2017, Science.

[6]  G. J. Snyder,et al.  Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs , 2017 .

[7]  G. Kearley,et al.  Time-Disordered Crystal Structure of AlPO4-5 , 2017 .

[8]  C. Uher,et al.  Entropy as a Gene‐Like Performance Indicator Promoting Thermoelectric Materials , 2017, Advanced materials.

[9]  Tiejun Zhu,et al.  Compromise and Synergy in High‐Efficiency Thermoelectric Materials , 2017, Advanced materials.

[10]  G. J. Snyder,et al.  Enhanced stability and thermoelectric figure-of-merit in copper selenide by lithium doping , 2017 .

[11]  K. Refson,et al.  Hopping Time Scales and the Phonon-Liquid Electron-Crystal Picture in Thermoelectric Copper Selenide. , 2017, Physical review letters.

[12]  G. J. Snyder,et al.  Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device , 2017 .

[13]  Zhenxiang Cheng,et al.  Improvement of thermoelectric properties and their correlations with electron effective mass in Cu1.98SxSe1−x , 2017, Scientific Reports.

[14]  C. Uher Materials Aspect of Thermoelectricity , 2016 .

[15]  Fusheng Liu,et al.  Structure and thermoelectric performance of β-Cu2Se doped with Fe, Ni, Mn, In, Zn or Sm , 2016 .

[16]  Zhong Lin Wang,et al.  Hybridized nanogenerator for simultaneously scavenging mechanical and thermal energies by electromagnetic-triboelectric-thermoelectric effects , 2016 .

[17]  Y. Lan,et al.  Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1−xCaxMg2Bi2 by band engineering and strain fluctuation , 2016, Proceedings of the National Academy of Sciences.

[18]  H. Xu,et al.  Novel Fe2P/graphitized carbon yolk/shell octahedra for high-efficiency hydrogen production and lithium storage , 2016 .

[19]  J. Zou,et al.  Te-Doped Cu2Se nanoplates with a high average thermoelectric figure of merit , 2016 .

[20]  Jiong Yang,et al.  Reduction of thermal conductivity by low energy multi-Einstein optic modes , 2016 .

[21]  Cuncheng Li,et al.  Enhanced thermoelectric performance of Cu2Se/Bi0.4Sb1.6Te3 nanocomposites at elevated temperatures , 2016 .

[22]  Airul Azha Abd Rahman,et al.  Enhanced thermoelectric properties of bismuth telluride–organic hybrid films via graphene doping , 2016, Applied Physics A.

[23]  Maxim Avdeev,et al.  Apparent critical phenomena in the superionic phase transition of Cu2-xSe , 2016 .

[24]  G. J. Snyder,et al.  Ultrahigh Thermoelectric Performance in Mosaic Crystals , 2015, Advanced materials.

[25]  M. Kaviany,et al.  Ultralow thermal conductivity of β-Cu2Se by atomic fluidity and structure distortion , 2015 .

[26]  D. Pontiroli,et al.  Hydrogen on graphene investigated by inelastic neutron scattering , 2014 .

[27]  Colm O'Dwyer,et al.  Thermoelectric Materials , 2014 .

[28]  Q. Zhang,et al.  Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing , 2014, Nature Communications.

[29]  G. J. Snyder,et al.  High-temperature thermoelectric properties of Cu1.97Ag0.03Se1+y , 2014, Materials for Renewable and Sustainable Energy.

[30]  Xingyu Gao,et al.  Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu2Se1‐xIx , 2013, Advanced materials.

[31]  Hao Li,et al.  High thermoelectric performance via hierarchical compositionally alloyed nanostructures. , 2013, Journal of the American Chemical Society.

[32]  Fang Zhang,et al.  Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors , 2012, Nano Research.

[33]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[34]  Fang Zhang,et al.  Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts. , 2012, ACS nano.

[35]  Long Lin,et al.  Pyroelectric nanogenerators for harvesting thermoelectric energy. , 2012, Nano letters.

[36]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[37]  Terry M. Tritt,et al.  Thermoelectric Phenomena, Materials, and Applications , 2011 .

[38]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[39]  Guanxiong Liu,et al.  Growth of large-area graphene films from metal-carbon melts , 2010, 1011.4081.

[40]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[41]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[42]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[43]  M. Knapp,et al.  Structural behaviour of β-Cu2−δSe (δ = 0, 0.15, 0.25) in dependence on temperature studied by synchrotron powder diffraction , 2006 .

[44]  Terry M. Tritt,et al.  Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View , 2006 .

[45]  A. Hoser,et al.  Crystal structure and lattice dynamics of superionic copper selenide Cu2−δSe , 2003 .

[46]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[47]  N. Takano,et al.  Solid Solubility of Carbon in Copper during Mechanical Alloying , 1998 .

[48]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[49]  Y. Benveniste,et al.  Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case , 1987 .

[50]  M. E. Rose,et al.  Internal conversion coefficients , 1959 .

[51]  E. Pask COOLING , 1958 .

[52]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[53]  Touvia Miloh,et al.  The effective conductivity of composites with imperfect thermal contact at constituent interfaces , 1986 .