Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex

[1]  A. Toga,et al.  The Rhesus Monkey Brain in Stereotaxic Coordinates , 1999 .

[2]  L Stark,et al.  A statistical analysis of pupil noise. , 1966, IEEE transactions on bio-medical engineering.

[3]  Suzanne N Haber,et al.  Frontal Cortical and Subcortical Projections Provide a Basis for Segmenting the Cingulum Bundle: Implications for Neuroimaging and Psychiatric Disorders , 2014, The Journal of Neuroscience.

[4]  M. Alpern,et al.  Vergence and accommodation. V. Pupil size changes associated with changes in accommodative vergence. , 1961, American journal of ophthalmology.

[5]  Kerry Hourigan,et al.  Wake transition of a rolling sphere , 2011, J. Vis..

[6]  B. Stein,et al.  Sources of subcortical projections to the superior colliculus in the cat , 1979, The Journal of comparative neurology.

[7]  Y. Dan,et al.  Neuromodulation of Brain States , 2012, Neuron.

[8]  Mark S. Gilzenrat,et al.  Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function , 2010, Cognitive, affective & behavioral neuroscience.

[9]  C. Bradshaw,et al.  Does modafinil activate the locus coeruleus in man? Comparison of modafinil and clonidine on arousal and autonomic functions in human volunteers , 2005, Psychopharmacology.

[10]  G. Engberg,et al.  A role of excitatory amino acids in the activation of locus coeruleus neurons following cutaneous thermal stimuli , 1990, Brain Research.

[11]  D A Newsome,et al.  Iris mechanics. I. Influence of pupil size on dynamics of pupillary movements. , 1971, American journal of ophthalmology.

[12]  M. Sarter,et al.  Modulators in concert for cognition: Modulator interactions in the prefrontal cortex , 2007, Progress in Neurobiology.

[13]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[14]  Eric I. Knudsen,et al.  A shared inhibitory circuit for both exogenous and endogenous control of stimulus selection , 2013, Nature Neuroscience.

[15]  D Kahneman,et al.  Pupil Diameter and Load on Memory , 1966, Science.

[16]  Markus H. Sneve,et al.  Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. , 2014, Journal of vision.

[17]  J. D. Hunter,et al.  Spontaneous fluctuations in pupil size are not triggered by lens accommodation , 2000, Vision Research.

[18]  Jonathan D. Cohen,et al.  The effects of neural gain on attention and learning , 2013, Nature Neuroscience.

[19]  H. Karten,et al.  Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): A possible substrate for synchronizing tectal channels , 2006, The Journal of comparative neurology.

[20]  Berrin Maraşligil,et al.  İnsanlarda Yenilik N2 Yanıtı Hedef Uyaranların Zamansal Sınıflamasını Yansıtır , 2011 .

[21]  S. Nieuwenhuis,et al.  The anatomical and functional relationship between the P3 and autonomic components of the orienting response. , 2011, Psychophysiology.

[22]  G. Aston-Jones,et al.  Activation of locus coeruleus from nucleus paragigantocellularis: a new excitatory amino acid pathway in brain , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  G. Ermentrout,et al.  Gamma rhythms and beta rhythms have different synchronization properties. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. E. López,et al.  The selective neurotoxin DSP-4 impairs the noradrenergic projections from the locus coeruleus to the inferior colliculus in rats , 2012, Front. Neural Circuits.

[25]  R. O’Connell,et al.  Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. , 2011, Psychophysiology.

[26]  Jonathan D. Cohen,et al.  An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. , 2005, Annual review of neuroscience.

[27]  Partha P. Mitra,et al.  Chronux: A platform for analyzing neural signals , 2010, Journal of Neuroscience Methods.

[28]  F. Bloom,et al.  The action of norepinephrine in the rat hippocampus. III. Hippocampal cellular responses to locus coeruleus stimulation in the awake rat , 1976, Brain Research.

[29]  D. Sparks,et al.  Sensory and motor maps in the mammalian superior colliculus , 1987, Trends in Neurosciences.

[30]  J. Beatty,et al.  Phasic not tonic pupillary responses vary with auditory vigilance performance. , 1982, Psychophysiology.

[31]  T. Knapen,et al.  Decision-related pupil dilation reflects upcoming choice and individual bias , 2014, Proceedings of the National Academy of Sciences.

[32]  S. Sara,et al.  Reward expectation, orientation of attention and locus coeruleus‐medial frontal cortex interplay during learning , 2004, The European journal of neuroscience.

[33]  Y Morad,et al.  Pupillography as an objective indicator of fatigue. , 2000, Current eye research.

[34]  Claudio Lavin,et al.  Pupil dilation signals uncertainty and surprise in a learning gambling task , 2014, Front. Behav. Neurosci..

[35]  D. Woodward,et al.  Noradrenergic modulation of somatosensory cortical neuronal responses to lontophoretically applied putative neurotransmitters , 1980, Experimental Neurology.

[36]  G. Aston-Jones,et al.  Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  E. V. Bockstaele,et al.  Light and electron microscopic evidence for topographic and monosynaptic projections from neurons in the ventral medulla to noradrenergic dendrites in the rat locus coeruleus , 1998, Brain Research.

[38]  W. Einhäuser,et al.  Pupil Dilation Signals Surprise: Evidence for Noradrenaline’s Role in Decision Making , 2011, Front. Neurosci..

[39]  Liqun Luo,et al.  Viral-genetic tracing of the input–output organization of a central norepinephrine circuit , 2015, Nature.

[40]  R. O’Connell,et al.  Pupil diameter covaries with BOLD activity in human locus coeruleus , 2014, Human brain mapping.

[41]  B. Richmond,et al.  Relation of locus coeruleus neurons in monkeys to Pavlovian and operant behaviors. , 2009, Journal of neurophysiology.

[42]  T. Sejnowski,et al.  Book Review: Gain Modulation in the Central Nervous System: Where Behavior, Neurophysiology, and Computation Meet , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[43]  A. Neice,et al.  Fentanyl, an agonist at the mu opioid receptor, depresses pupillary unrest , 2015, Autonomic Neuroscience.

[44]  Stephen V. David,et al.  Cortical Membrane Potential Signature of Optimal States for Sensory Signal Detection , 2015, Neuron.

[45]  Angela J. Yu,et al.  Uncertainty, Neuromodulation, and Attention , 2005, Neuron.

[46]  D. McCormick,et al.  Rapid Neocortical Dynamics: Cellular and Network Mechanisms , 2009, Neuron.

[47]  Douglas P Munoz,et al.  A circuit for pupil orienting responses: implications for cognitive modulation of pupil size , 2015, Current Opinion in Neurobiology.

[48]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[49]  J. Gold,et al.  Phasic Activation of Individual Neurons in the Locus Ceruleus/Subceruleus Complex of Monkeys Reflects Rewarded Decisions to Go But Not Stop , 2014, The Journal of Neuroscience.

[50]  Luke Bloy,et al.  A method for localizing microelectrode trajectories in the macaque brain using MRI , 2009, Journal of Neuroscience Methods.

[51]  J. Beatty,et al.  Contrasting effects of response uncertainty on the task-evoked pupillary response and reaction time. , 1987, Psychophysiology.

[52]  Brian J. White,et al.  Microstimulation of the Monkey Superior Colliculus Induces Pupil Dilation Without Evoking Saccades , 2012, The Journal of Neuroscience.

[53]  B. Waterhouse,et al.  Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices , 2014, Proceedings of the National Academy of Sciences.

[54]  J. Allman,et al.  Comparative anatomy of the locus coeruleus in humans and nonhuman primates , 2010, The Journal of comparative neurology.

[55]  H. E. Krugman,et al.  Some Applications of Pupil Measurement , 1964 .

[56]  N. Dillier,et al.  Activation of an inhibitory noradrenergic pathway projecting from the locus coeruleus to the cingulate cortex of the rat , 1978, Brain Research.

[57]  T. Takeuchi,et al.  Estimation of Mental Effort in Learning Visual Search by Measuring Pupil Response , 2011, PloS one.

[58]  H. Herbert,et al.  Distribution and origin of noradrenergic and serotonergic fibers in the cochlear nucleus and inferior colliculus of the rat , 1991, Brain Research.

[59]  J. Tepper,et al.  Basal ganglia control of substantia nigra dopaminergic neurons. , 2009, Journal of neural transmission. Supplementum.

[60]  David P. Friedman,et al.  Norepinephrinergic afferents and cytology of the macaque monkey midline, mediodorsal, and intralaminar thalamic nuclei , 2008, Brain Structure and Function.

[61]  George H. Denfield,et al.  Pupil Fluctuations Track Fast Switching of Cortical States during Quiet Wakefulness , 2014, Neuron.

[62]  E. Granholm,et al.  Pupillometric measures of cognitive and emotional processes. , 2004, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[63]  R. Burde,et al.  Brainstem connections to the Edinger-Westphal nucleus of the cat: a retrograde tracer study , 1983, Brain Research.

[64]  F. Bloom,et al.  The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway. , 1974, Brain research.

[65]  A. von Stein,et al.  Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[66]  J. Movshon,et al.  A computational analysis of the relationship between neuronal and behavioral responses to visual motion , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  C. Koch,et al.  Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry , 2008, Proceedings of the National Academy of Sciences.

[68]  S. Martinez-Conde,et al.  The impact of microsaccades on vision: towards a unified theory of saccadic function , 2013, Nature Reviews Neuroscience.

[69]  John M. Pearson,et al.  Surprise Signals in Anterior Cingulate Cortex: Neuronal Encoding of Unsigned Reward Prediction Errors Driving Adjustment in Behavior , 2011, The Journal of Neuroscience.

[70]  F. Bloom,et al.  Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. , 1983, Physiological reviews.

[71]  J D Cohen,et al.  A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. , 1990, Science.

[72]  G. Aston-Jones,et al.  Response of locus coeruleus neurons to footshock stimulation is mediated by neurons in the rostral ventral medulla , 1993, Neuroscience.

[73]  G. Aston-Jones,et al.  Atomoxetine modulates spontaneous and sensory-evoked discharge of locus coeruleus noradrenergic neurons , 2013, Neuropharmacology.

[74]  S. Sara,et al.  Orienting and Reorienting: The Locus Coeruleus Mediates Cognition through Arousal , 2012, Neuron.

[75]  Sander Nieuwenhuis,et al.  Pupil Diameter Predicts Changes in the Exploration–Exploitation Trade-off: Evidence for the Adaptive Gain Theory , 2011, Journal of Cognitive Neuroscience.

[76]  D. Atchison,et al.  Pupil size, mean accommodation response and the fluctuations of accommodation , 1997, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[77]  M. Vinck,et al.  Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding , 2014, bioRxiv.

[78]  S. Bouret,et al.  Noradrenaline and Dopamine Neurons in the Reward/Effort Trade-Off: A Direct Electrophysiological Comparison in Behaving Monkeys , 2015, The Journal of Neuroscience.

[79]  R. B. Ebitz,et al.  Neuronal Activity in Primate Dorsal Anterior Cingulate Cortex Signals Task Conflict and Predicts Adjustments in Pupil-Linked Arousal , 2015, Neuron.

[80]  Christof Koch,et al.  Fully Formatted Pdf and Full Text (html) Versions Will Be Made Available Soon. Pupil Dilation Betrays the Timing of Decisions , 2022 .

[81]  J. Beatty Task-evoked pupillary responses, processing load, and the structure of processing resources. , 1982 .

[82]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[83]  Robert C. Wilson,et al.  Rational regulation of learning dynamics by pupil–linked arousal systems , 2012, Nature Neuroscience.

[84]  C. Bradshaw,et al.  Comparison of the effects of clonidine and yohimbine on pupillary diameter at different illumination levels. , 2000, British journal of clinical pharmacology.

[85]  G. Aston-Jones,et al.  Activation of locus coeruleus neurons by nucleus paragigantocellularis or noxious sensory stimulation is mediated by intracoerulear excitatory amino acid neurotransmission , 1992, Brain Research.

[86]  Helmut Wilhelm,et al.  How do spontaneous pupillary oscillations in light relate to light intensity? , 2009, Vision Research.

[87]  E. Bézard,et al.  Compensatory effects of glutamatergic inputs to the substantia nigra pars compacta in experimental Parkinsonism , 1997, Neuroscience.

[88]  M. Siegel,et al.  A framework for local cortical oscillation patterns , 2011, Trends in Cognitive Sciences.

[89]  Taylor R. Hayes,et al.  Mapping and correcting the influence of gaze position on pupil size measurements , 2015, Behavior Research Methods.

[90]  Microsaccades , 2011, Current Biology.

[91]  Laurent Itti,et al.  Transient Pupil Response Is Modulated by Contrast-Based Saliency , 2014, The Journal of Neuroscience.

[92]  P. Goldman-Rakic,et al.  Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP , 1982, The Journal of comparative neurology.

[93]  I. E. Loewenfeld,et al.  The Pupil: Anatomy, Physiology, and Clinical Applications , 1999 .

[94]  Jin U. Kang,et al.  Norepinephrine Controls Astroglial Responsiveness to Local Circuit Activity , 2014, Neuron.

[95]  Pat Levitt,et al.  Noradrenaline neuron innervation of the neocortex in the rat , 1978, Brain Research.