Molecular Basis for the Interaction of the Mammalian Amino Acid Transporters B0AT1 and B0AT3 with Their Ancillary Protein Collectrin*

Background: Collectrin is required for membrane expression of the broad neutral amino acid transporters (B0AT1 and -3). Results: Collectrin activates B0AT1 and B0AT3 in a discrete interaction region of the transporters. Conclusion: A potential conserved ancillary protein binding region in B0AT1/B0AT3 mediates collectrin interactions. Significance: This is the first example of a potential common interaction site for multiple solute carrier 6 family ancillary proteins. Many solute carrier 6 (SLC6) family transporters require ancillary subunits to modify their expression and activity. The main apical membrane neutral amino acid transporters in mouse intestine and kidney, B0AT1 and B0AT3, require the ancillary protein collectrin or ACE2 for plasma membrane expression. Expression and activity of SLC6 neurotransmitter transporters are modulated by interaction with syntaxin 1A. Utilizing monocarboxylate-B0AT1/3 fusion constructs, we discovered that collectrin is also necessary for B0AT1 and B0AT3 catalytic function. Syntaxin 1A and syntaxin 3 inhibit the membrane expression of B0AT1 by competing with collectrin for access. A mutagenesis screening approach identified residues on trans-membrane domains 1α, 5, and 7 on one face of B0AT3 as a key region involved in interaction with collectrin. Mutant analysis established residues that were involved in collectrin-dependent functions as follows: plasma membrane expression of B0AT3, catalytic activation, or both. These results identify a potential binding site for collectrin and other SLC6 ancillary proteins.

[1]  Simone Moreira de Macêdo,et al.  The role of renin-angiotensin system modulation on treatment and prevention of liver diseases , 2014, Peptides.

[2]  S. Bröer,et al.  Impaired Nutrient Signaling and Body Weight Control in a Na+ Neutral Amino Acid Cotransporter (Slc6a19)-deficient Mouse* , 2011, The Journal of Biological Chemistry.

[3]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[4]  L. Forrest,et al.  The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. , 2009, Physiology.

[5]  A. Sidhu,et al.  Synuclein modulation of monoamine transporters , 2011, FEBS letters.

[6]  F. Verrey,et al.  Steady-state kinetic characterization of the mouse B0AT1 sodium-dependent neutral amino acid transporter , 2005, Pflügers Archiv.

[7]  I. Shimomura,et al.  Glucose enhances collectrin protein expression in insulin-producing MIN6 beta cells. , 2009, Biochemical and Biophysical Research Communications - BBRC.

[8]  H. Sitte,et al.  Oligomerization of neurotransmitter transporters: a ticket from the endoplasmic reticulum to the plasma membrane. , 2006, Handbook of experimental pharmacology.

[9]  R. Neubig,et al.  A Juxtamembrane Mutation in the N Terminus of the Dopamine Transporter Induces Preference for an Inward-Facing Conformation , 2009, Molecular Pharmacology.

[10]  R. MacKinnon,et al.  Principles of Selective Ion Transport in Channels and Pumps , 2005, Science.

[11]  A. Bröer,et al.  Characterization of mouse amino acid transporter B0AT1 (slc6a19). , 2005, The Biochemical journal.

[12]  R. Jahn,et al.  Core proteins of the secretory machinery. , 2008, Handbook of experimental pharmacology.

[13]  H. Wit Molecular mechanism of secretory vesicle docking , 2010 .

[14]  R. Blakely,et al.  The N-terminus of the norepinephrine transporter regulates the magnitude and selectivity of the transporter-associated leak current , 2006, Neuropharmacology.

[15]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[16]  Ulrik Gether,et al.  Regulation of dopamine transporter function by protein‐protein interactions: new discoveries and methodological challenges , 2010, Journal of neurochemistry.

[17]  Harini Krishnamurthy,et al.  X-ray structures of LeuT in substrate-free outward-open and apo inward-open states , 2012, Nature.

[18]  Robert Kleta,et al.  Tissue-Specific Amino Acid Transporter Partners ACE2 and Collectrin Differentially Interact With Hartnup Mutations , 2008, Gastroenterology.

[19]  M. Quick The role of SNARE proteins in trafficking and function of neurotransmitter transporters. , 2006, Handbook of experimental pharmacology.

[20]  Sebastian Radestock,et al.  The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. , 2011, Journal of molecular biology.

[21]  K. Fukui,et al.  The HNF‐1α‐SNARE connection , 2007 .

[22]  R. Carey,et al.  Loss of Collectrin, an Angiotensin-Converting Enzyme 2 Homolog, Uncouples Endothelial Nitric Oxide Synthase and Causes Hypertension and Vascular Dysfunction , 2013, Circulation.

[23]  A. Bröer,et al.  Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19 , 2004, Nature Genetics.

[24]  A. Le Bivic,et al.  Human syntaxin 3 is localized apically in human intestinal cells. , 1997, Journal of cell science.

[25]  D. Warnock,et al.  Interaction of syntaxins with epithelial ion channels , 2000, Current opinion in nephrology and hypertension.

[26]  Eric Gouaux,et al.  X-ray structure of dopamine transporter elucidates antidepressant mechanism , 2013, Nature.

[27]  N. Grishin,et al.  PROMALS3D: a tool for multiple protein sequence and structure alignments , 2008, Nucleic acids research.

[28]  R. Blakely,et al.  A Regulated Interaction of Syntaxin 1A with the Antidepressant-Sensitive Norepinephrine Transporter Establishes Catecholamine Clearance Capacity , 2003, The Journal of Neuroscience.

[29]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[30]  M. Quick Substrates regulate γ-aminobutyric acid transporters in a syntaxin 1A-dependent manner , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  W. Gahl,et al.  Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder , 2004, Nature Genetics.

[32]  S. Bröer,et al.  Enterocyte-specific Regulation of the Apical Nutrient Transporter SLC6A19 (B0AT1) by Transcriptional and Epigenetic Networks* , 2013, The Journal of Biological Chemistry.

[33]  P. Rosenstiel,et al.  ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation , 2012, Nature.

[34]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[35]  Site-Directed Mutations near Transmembrane Domain 1 Alter Conformation and Function of Norepinephrine and Dopamine Transporters , 2011, Molecular Pharmacology.

[36]  M. Freeman,et al.  From gene to protein—experimental and clinical studies of ACE2 in blood pressure control and arterial hypertension , 2014, Front. Physiol..

[37]  R. Blakely,et al.  SNARE-ing neurotransmitter transporters , 2000, Nature Neuroscience.

[38]  S. Broer Diseases associated with general amino acid transporters of the solute carrier 6 family (SLC6). , 2013, Current molecular pharmacology.

[39]  Intracellular Domains of a Rat Brain GABA Transporter That Govern Transport , 2004, The Journal of Neuroscience.

[40]  J. Penninger,et al.  Essential role for collectrin in renal amino acid transport , 2006, Nature.

[41]  M. Quick,et al.  Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A , 2000, Nature Neuroscience.

[42]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[43]  L. DeFelice,et al.  An N-Terminal Threonine Mutation Produces an Efflux-Favorable, Sodium-Primed Conformation of the Human Dopamine Transporter , 2014, Molecular Pharmacology.

[44]  R. Blakely,et al.  Dopamine transporter/syntaxin 1A interactions regulate transporter channel activity and dopaminergic synaptic transmission , 2008, Proceedings of the National Academy of Sciences.

[45]  T. Südhof,et al.  Pharmacology of neurotransmitter release , 2008 .

[46]  Harel Weinstein,et al.  A Comprehensive Structure-Based Alignment of Prokaryotic and Eukaryotic Neurotransmitter/Na+ Symporters (NSS) Aids in the Use of the LeuT Structure to Probe NSS Structure and Function , 2006, Molecular Pharmacology.

[47]  H. Sitte,et al.  Structure and Regulatory Interactions of the Cytoplasmic Terminal Domains of Serotonin Transporter , 2014, Biochemistry.

[48]  J. Rasko,et al.  A protein complex in the brush‐border membrane explains a Hartnup disorder allele , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[49]  S. Bröer,et al.  Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. , 2008, The Journal of clinical investigation.

[50]  H. Kasai,et al.  The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation. , 2005, Cell metabolism.

[51]  B. López-Corcuera,et al.  Regulation of glycine transporters. , 2001, Biochemical Society transactions.

[52]  Dan Wang,et al.  Syntaxin 1A inhibits GABA flux, efflux, and exchange mediated by the rat brain GABA transporter GAT1. , 2003, Molecular pharmacology.

[53]  S. Bröer Epithelial neutral amino acid transporters: lessons from mouse models , 2013, Current opinion in nephrology and hypertension.

[54]  Jan Krützfeldt,et al.  Tmem27: a cleaved and shed plasma membrane protein that stimulates pancreatic beta cell proliferation. , 2005, Cell metabolism.

[55]  B. Egan Collectrin, an X-linked, angiotensin converting enzyme 2 homolog, causes hypertension in a rat strain through gene-gene and gene-environment interactions: relevance to human hypertension. , 2013, Circulation.

[56]  S. Bröer,et al.  Mice lacking neutral amino acid transporter B0AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control , 2015, Molecular metabolism.

[57]  S. Amara,et al.  Membrane Cholesterol Modulates the Outward Facing Conformation of the Dopamine Transporter and Alters Cocaine Binding* , 2010, The Journal of Biological Chemistry.

[58]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[59]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[60]  Andreas P. Eichenberger,et al.  Definition and testing of the GROMOS force-field versions 54A7 and 54B7 , 2011, European Biophysics Journal.

[61]  L. Bao,et al.  SNAP-25/Syntaxin 1A Complex Functionally Modulates Neurotransmitter γ-Aminobutyric Acid Reuptake* , 2006, Journal of Biological Chemistry.

[62]  Hao Fan,et al.  Refinement of homology‐based protein structures by molecular dynamics simulation techniques , 2004, Protein science : a publication of the Protein Society.

[63]  S. Bröer Xenopus laevis Oocytes. , 2010, Methods in molecular biology.

[64]  S. Bröer,et al.  Intestinal peptidases form functional complexes with the neutral amino acid transporter B0AT1 , 2012, The Biochemical journal.

[65]  S. McCall,et al.  Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin. , 2007, American journal of physiology. Renal physiology.

[66]  S. Bröer,et al.  Renal imino acid and glycine transport system ontogeny and involvement in developmental iminoglycinuria. , 2010, The Biochemical journal.

[67]  T. Weimbs,et al.  SNARE expression and localization in renal epithelial cells suggest mechanism for variability of trafficking phenotypes. , 2002, American journal of physiology. Renal physiology.

[68]  K. Kirk,et al.  The Interaction between Syntaxin 1A and Cystic Fibrosis Transmembrane Conductance Regulator Cl− Channels Is Mechanistically Distinct from Syntaxin 1A-SNARE Interactions* , 2003, The Journal of Biological Chemistry.

[69]  M. Fox,et al.  Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors , 2014, Amino Acids.

[70]  Alan E Mark,et al.  On the Validation of Molecular Dynamics Simulations of Saturated and cis-Monounsaturated Phosphatidylcholine Lipid Bilayers: A Comparison with Experiment. , 2010, Journal of chemical theory and computation.

[71]  J. B. Sørensen SNARE complexes prepare for membrane fusion , 2005, Trends in Neurosciences.

[72]  H. Sitte,et al.  Sodium-dependent neurotransmitter transporters: oligomerization as a determinant of transporter function and trafficking. , 2004, Molecular interventions.

[73]  M. Quick,et al.  Syntaxin 1A up-regulates GABA transporter expression by subcellular redistribution. , 2001, Molecular membrane biology.

[74]  D. Meredith,et al.  Basigin (CD147) Is the Target for Organomercurial Inhibition of Monocarboxylate Transporter Isoforms 1 and 4 , 2005, Journal of Biological Chemistry.

[75]  Berk Hess,et al.  Improving Efficiency of Large Time-Scale Molecular Dynamics Simulations of Hydrogen-Rich Systems , 1999 .

[76]  M. Stoffel,et al.  Tmem27 dimerization, deglycosylation, plasma membrane depletion, and the extracellular Phe-Phe motif are negative regulators of cleavage by Bace2 , 2012, Biological chemistry.

[77]  G. Li,et al.  Role of SNAREs and H+-ATPase in the targeting of proton pump-coated vesicles to collecting duct cell apical membrane. , 2007, Kidney international.

[78]  C. Dominguez,et al.  HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. , 2003, Journal of the American Chemical Society.

[79]  S. Bröer,et al.  The solute carrier 6 family of transporters , 2012, British journal of pharmacology.

[80]  A. Bröer,et al.  Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. , 1998, The Biochemical journal.

[81]  E. Frohlich,et al.  Clinical Perspectives and Fundamental Aspects of Local Cardiovascular and Renal Renin-Angiotensin Systems , 2014, Front. Endocrinol..

[82]  M. Caron,et al.  Orphan Transporter SLC6A18 Is Renal Neutral Amino Acid Transporter B0AT3* , 2009, The Journal of Biological Chemistry.

[83]  M. Caron,et al.  Consideration of allosterism and interacting proteins in the physiological functions of the serotonin transporter. , 2012, Biochemical pharmacology.

[84]  Eric Gouaux,et al.  Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters , 2005, Nature.