Recently, Freilich et al. [Science 329, 1182 (2010)] experimentally discovered stationary states of vortex dipoles, pairs of vortices of opposite circulation, in dilute Bose-Einstein condensates. To explain their observations, we perform simulations based on the Gross-Pitaevskii equation and obtain excellent quantitative agreement on the size of the stationary dipole. We also investigate how their imaging method, in which atoms are repeatedly extracted from a single condensate, affects the vortex dynamics. We find that it mainly induces isotropic size oscillations of the condensate without otherwise disturbing the vortex trajectories. Thus, the imaging technique appears to be a promising tool for studying real-time superfluid dynamics.