Maximum likelihood estimation in log-linear models
暂无分享,去创建一个
[1] Jason Morton,et al. Relations among conditional probabilities , 2008, J. Symb. Comput..
[2] Ruth King,et al. Prior induction in log-linear models for general contingency table analysis , 2001 .
[3] Joseph B. Lang,et al. Multinomial-Poisson homogeneous models for contingency tables , 2003 .
[4] Y. Bishop,et al. Full Contingency Tables, Logits, and Split Contingency Tables , 1969 .
[5] H. Wynn,et al. Algebraic Statistics: Computational Commutative Algebra in Statistics , 2000 .
[6] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[7] D. Hunter. MM algorithms for generalized Bradley-Terry models , 2003 .
[8] Akimichi Takemura,et al. Iterative proportional scaling via decomposable submodels for contingency tables , 2006, Comput. Stat. Data Anal..
[9] I. Csiszár,et al. Closures of exponential families , 2005, math/0503653.
[10] L. Brown. Fundamentals of statistical exponential families: with applications in statistical decision theory , 1986 .
[11] J. Chimka. Categorical Data Analysis, Second Edition , 2003 .
[12] Stephen E. Fienberg,et al. Maximum Likelihood Estimation in Log-Linear Models Supplementary Material , 2006 .
[13] I. Csiszár. A geometric interpretation of Darroch and Ratcliff's generalized iterative scaling , 1989 .
[14] J. Darroch,et al. Generalized Iterative Scaling for Log-Linear Models , 1972 .
[15] S. Fienberg,et al. The Geometry of a Two by Two Contingency Table , 1970 .
[16] Michael Joswig,et al. polymake: a Framework for Analyzing Convex Polytopes , 2000 .
[17] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[18] Donal O'Shea,et al. Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.
[19] A. Rinaldo,et al. MAXIMUM LIKELIHOOD ESTIMATION IN LOG-LINEAR , 2012 .
[20] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[21] Stephen E. Fienberg,et al. Three centuries of categorical data analysis: Log-linear models and maximum likelihood estimation , 2007 .
[22] Timothy R. C. Read,et al. Goodness-Of-Fit Statistics for Discrete Multivariate Data , 1988 .
[23] A. Rinaldo,et al. On the geometry of discrete exponential families with application to exponential random graph models , 2008, 0901.0026.
[24] Jonathan J. Forster,et al. Bayesian inference for Poisson and multinomial log-linear models , 2010 .
[25] P. Diaconis,et al. Algebraic algorithms for sampling from conditional distributions , 1998 .
[26] I. Csiszár,et al. Convex cores of measures on R d , 2001 .
[27] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[28] C. Ireland,et al. Analysis of frequency data. , 2010 .
[29] Ronald Christensen,et al. Log-Linear Models and Logistic Regression , 1997 .
[30] S. Fienberg. An Iterative Procedure for Estimation in Contingency Tables , 1970 .
[31] H. Massam,et al. A conjugate prior for discrete hierarchical log-linear models , 2006, 0711.1609.
[32] J. F. C. Kingman,et al. Information and Exponential Families in Statistical Theory , 1980 .
[33] Joseph B. Lang,et al. On the comparison of multinomial and Poisson log-linear models , 1996 .
[34] I. Csiszár. $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .
[35] Imre Csiszár,et al. Generalized maximum likelihood estimates for exponential families , 2006, 2006 IEEE International Symposium on Information Theory.
[36] A. Takemura,et al. Some characterizations of minimal Markov basis for sampling from discrete conditional distributions , 2004 .
[37] J. Bunker. The national halothane study : a study of the possible association between halothane anesthesia and postoperative hepatic necrosis; report , 1971 .
[38] T. Speed,et al. Additive and Multiplicative Models and Interactions , 1983 .
[39] G. Ziegler,et al. Polytopes : combinatorics and computation , 2000 .
[40] S. Sullivant,et al. Sequential importance sampling for multiway tables , 2006, math/0605615.
[41] O. Barndorff-Nielsen. Information and Exponential Families in Statistical Theory , 1980 .
[42] Nicholas Eriksson,et al. Polyhedral conditions for the nonexistence of the MLE for hierarchical log-linear models , 2006, J. Symb. Comput..
[43] D. Geiger,et al. On the toric algebra of graphical models , 2006, math/0608054.
[44] Alessandro Rinaldo,et al. Computing Maximum Likelihood Estimates in Log-Linear Models , 2006 .
[45] I. Csiszár,et al. Generalized maximum likelihood estimates for exponential families , 2008 .
[46] Stephen E. Fienberg,et al. Maximum Likelihood Estimation in Network Models , 2011, ArXiv.
[47] Radim Jirousek,et al. Solution of the marginal problem and decomposable distributions , 1991, Kybernetika.
[48] A. Dawid,et al. Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory , 2004, math/0410076.
[49] Shelby J. Haberman,et al. Log-Linear Models and Frequency Tables with Small Expected Cell Counts , 1977 .
[50] G. Ziegler. Lectures on Polytopes , 1994 .
[51] Thomas Brox,et al. Maximum Likelihood Estimation , 2019, Time Series Analysis.
[52] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[53] L. Goddard. Information Theory , 1962, Nature.
[54] P. Holland,et al. Discrete Multivariate Analysis. , 1976 .
[55] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[56] Carl N. Morris,et al. CENTRAL LIMIT THEOREMS FOR MULTINOMIAL SUMS , 1975 .
[57] W. Fulton. Introduction to Toric Varieties. , 1993 .
[58] S. Haberman,et al. The analysis of frequency data , 1974 .
[59] G. Ewald. Combinatorial Convexity and Algebraic Geometry , 1996 .
[60] Seth Sullivant,et al. Lectures on Algebraic Statistics , 2008 .
[61] A. Rinaldo,et al. Algebraic Statistics and Contingency Table Problems: Log-Linear Models, Likelihood Estimation, and Disclosure Limitation , 2009 .
[62] M. W. Birch. Maximum Likelihood in Three-Way Contingency Tables , 1963 .
[63] Francesco M. Malvestuto,et al. An implementation of the iterative proportional fitting procedure by propagation trees , 2001 .
[64] Joseph B. Lang,et al. Homogeneous Linear Predictor Models for Contingency Tables , 2005 .
[65] Charles J. Geyer,et al. Likelihood inference in exponential families and directions of recession , 2009, 0901.0455.
[66] A. Rinaldo,et al. The Log-Linear Group Lasso Estimator and Its Asymptotic Properties , 2007, 0709.3526.
[67] Alan Agresti,et al. Categorical Data Analysis , 2003 .
[68] Imre Csiszár,et al. Information projections revisited , 2000, IEEE Trans. Inf. Theory.
[69] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[70] Albert Verbeek,et al. The compactification of generalized linear models , 1992 .
[71] Michael I. Jordan. Graphical Models , 2003 .
[72] N. Čencov. Statistical Decision Rules and Optimal Inference , 2000 .
[73] K. Koehler. Goodness-of-fit tests for log-linear models in sparse contingency tables , 1986 .
[74] Robert B. Ash,et al. Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.
[75] J. Brasselet. Introduction to toric varieties , 2004 .
[76] H. Massam,et al. The mode oriented stochastic search (MOSS) algorithm for log-linear models with conjugate priors , 2010 .
[77] M. Aickin. Existence of MLEs for discrete linear exponential models , 1979 .
[78] L. Pachter,et al. Algebraic Statistics for Computational Biology: Preface , 2005 .
[79] S. Fienberg,et al. DESCRIBING DISABILITY THROUGH INDIVIDUAL-LEVEL MIXTURE MODELS FOR MULTIVARIATE BINARY DATA. , 2007, The annals of applied statistics.
[80] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .