Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast

We consider linear divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L∞(Ω), $${\Omega \subset \mathbb R^d}$$) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most general case of arbitrary bounded coefficients. For such problems, we introduce explicit and optimal finite dimensional approximations of solutions that can be viewed as a theoretical Galerkin method with controlled error estimates, analogous to classical homogenization approximations. In particular, this approach allows one to analyze a given medium directly without introducing the mathematical concept of an $${\epsilon}$$ family of media as in classical homogenization. We define the flux norm as the L2 norm of the potential part of the fluxes of solutions, which is equivalent to the usual H1-norm. We show that in the flux norm, the error associated with approximating, in a properly defined finite-dimensional space, the set of solutions of the aforementioned PDEs with rough coefficients is equal to the error associated with approximating the set of solutions of the same type of PDEs with smooth coefficients in a standard space (for example, piecewise polynomial). We refer to this property as the transfer property. A simple application of this property is the construction of finite dimensional approximation spaces with errors independent of the regularity and contrast of the coefficients and with optimal and explicit convergence rates. This transfer property also provides an alternative to the global harmonic change of coordinates for the homogenization of elliptic operators that can be extended to elasticity equations. The proofs of these homogenization results are based on a new class of elliptic inequalities. These inequalities play the same role in our approach as the div-curl lemma in classical homogenization.

[1]  H. Weyl,et al.  Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .

[2]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[3]  G. Hedstrom,et al.  Numerical Solution of Partial Differential Equations , 1966 .

[4]  S. Spagnolo,et al.  Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche , 1968 .

[5]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[6]  J. Craggs Applied Mathematical Sciences , 1973 .

[7]  Global estimates of holder continuity for a class of divergence-form elliptic equations , 1974 .

[8]  S. Spagnolo,et al.  CONVERGENCE IN ENERGY FOR ELLIPTIC OPERATORS , 1976 .

[9]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[10]  F. Murat,et al.  Compacité par compensation , 1978 .

[11]  S. Kozlov AVERAGING OF RANDOM OPERATORS , 1980 .

[12]  A. Brandt Guide to multigrid development , 1982 .

[13]  C. Radhakrishna Rao,et al.  Statistics and probability : essays in honor of C.R. Rao , 1983 .

[14]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[15]  Ivo Babuška,et al.  Finite Element Methods: Principles for Their Selection. , 1984 .

[16]  Scott Schumacher,et al.  Diffusions with random coefficients , 1984 .

[17]  R. Horne,et al.  Computing Absolute Transmissibility in the Presence of Fine-Scale Heterogeneity , 1987 .

[18]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[19]  R. Bank,et al.  5. Variational Multigrid Theory , 1987 .

[20]  John M. Lee,et al.  Determining anisotropic real-analytic conductivities by boundary measurements , 1989 .

[21]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media , 1989 .

[22]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[23]  G. Allaire Homogenization and two-scale convergence , 1992 .

[24]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[25]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[26]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[27]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[28]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[29]  P. Donato,et al.  An introduction to homogenization , 2000 .

[30]  Jens Markus Melenk,et al.  On n-widths for elliptic problems , 2000 .

[31]  Antonino Maugeri,et al.  Elliptic and Parabolic Equations with Discontinuous Coefficients , 2000 .

[32]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[33]  Rüdiger Verfürth,et al.  Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.

[34]  On uniform H2-estimates in periodic homogenization , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[35]  Matti Lassas,et al.  On determining a Riemannian manifold from the Dirichlet-to-Neumann map , 2001 .

[36]  S. Yau Mathematics and its applications , 2002 .

[37]  Andrea Braides Γ-convergence for beginners , 2002 .

[38]  S. Leonardi Weighted Miranda-Talenti inequality and applications to equations with discontinuous coefficients , 2002 .

[39]  T. Hou,et al.  Analysis of upscaling absolute permeability , 2002 .

[40]  Alano Ancona,et al.  Some results and examples about the behavior of harmonic functions and Green’s functions with respect to second order elliptic operators , 2002, Nagoya Mathematical Journal.

[41]  Yu. Netrusov,et al.  Weyl Asymptotic Formula for the Laplacian on Domains with Rough Boundaries , 2003 .

[42]  Qatu,et al.  Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, Vol 146 , 2003 .

[43]  G. Alessandrini,et al.  Univalent Σ-harmonic mappings: connections with quasiconformal mappings , 2003 .

[44]  T. Hou,et al.  Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation , 2004 .

[45]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[46]  Graeme W. Milton,et al.  Change of Sign of the Corrector’s Determinant for Homogenization in Three-Dimensional Conductivity , 2004 .

[47]  Grégoire Allaire,et al.  A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..

[48]  Todd Arbogast,et al.  Subgrid Upscaling and Mixed Multiscale Finite Elements , 2006, SIAM J. Numer. Anal..

[49]  Antoine Gloria,et al.  An Analytical Framework for the Numerical Homogenization of Monotone Elliptic Operators and Quasiconvex Energies , 2006, Multiscale Model. Simul..

[50]  Houman Owhadi,et al.  Numerical homogenization of the acoustic wave equations with a continuum of scales , 2006 .

[51]  A Rationale for Pursuing EIT and MREIT in 3-D Based on Weyl Asymptotics and Problem Conditioning , 2006, 2006 12th Biennial IEEE Conference on Electromagnetic Field Computation.

[52]  Claude Le Bris,et al.  Une variante de la thorie de l'homognisation stochastique des oprateurs elliptiques , 2006 .

[53]  H. Owhadi,et al.  Homogenization of the acoustic wave equation with a continuum of scales. , 2006 .

[54]  Yalchin Efendiev,et al.  Accurate multiscale finite element methods for two-phase flow simulations , 2006, J. Comput. Phys..

[55]  Ivo Babuška,et al.  Assessment of the cost and accuracy of the generalized FEM , 2007 .

[56]  Houman Owhadi,et al.  Homogenization of Parabolic Equations with a Continuum of Space and Time Scales , 2007, SIAM J. Numer. Anal..

[57]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[58]  H. Owhadi,et al.  Metric‐based upscaling , 2007 .

[59]  Pierre-Louis Lions,et al.  Stochastic homogenization and random lattices , 2007 .

[60]  Todd Arbogast,et al.  IMPROVED ACCURACY FOR ALTERNATING-DIRECTION METHODS FOR PARABOLIC EQUATIONS BASED ON REGULAR AND MIXED FINITE ELEMENTS , 2007 .

[61]  Yalchin Efendiev,et al.  Multiscale finite element methods for porous media flows and their applications , 2007 .

[62]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[63]  Reinhold Schneider,et al.  Sparse second moment analysis for elliptic problems in stochastic domains , 2008, Numerische Mathematik.

[64]  Panagiotis E. Souganidis,et al.  Asymptotic and numerical homogenization , 2008, Acta Numerica.

[65]  Panagiotis E. Souganidis,et al.  A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs , 2008 .

[66]  I. Babuska,et al.  The penetration function and its application to microscale problems , 2008 .

[67]  George Papanicolaou,et al.  A Framework for Adaptive Multiscale Methods for Elliptic Problems , 2008, Multiscale Model. Simul..

[68]  Discrete Geometric Structures in Homogenization and Inverse Homogenization with Application to EIT , 2009, 0904.2601.

[69]  Xiao-Hui Wu,et al.  Challenges and Technologies in Reservoir Modeling , 2009 .

[70]  Mathieu Desbrun,et al.  Numerical coarsening of inhomogeneous elastic materials , 2009, SIGGRAPH 2009.

[71]  Yalchin Efendiev,et al.  Multiscale finite element and domain decomposition methods for high-contrast problems using local spectral basis functions , 2009 .

[72]  Houman Owhadi,et al.  Global Energy Matching Method for Atomistic-to-Continuum Modeling of Self-Assembling Biopolymer Aggregates , 2010, Multiscale Model. Simul..

[73]  Ivan G. Graham,et al.  A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..

[74]  Yalchin Efendiev,et al.  Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..

[75]  Wei Song,et al.  Finite-Element Method , 2012 .