The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary

[1]  S. Patil,et al.  Epithelioid Glioblastomas and Anaplastic Epithelioid Pleomorphic Xanthoastrocytomas—Same Entity or First Cousins? , 2016, Brain pathology.

[2]  David T. W. Jones,et al.  Gliomatosis cerebri: no evidence for a separate brain tumor entity , 2016, Acta Neuropathologica.

[3]  Scott N. Hwang,et al.  Gliomatosis cerebri in children shares molecular characteristics with other pediatric gliomas , 2016, Acta Neuropathologica.

[4]  P. Burger,et al.  Pleomorphic Xanthoastrocytoma: Natural History and Long‐Term Follow‐Up , 2015, Brain pathology.

[5]  Steven J. M. Jones,et al.  Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. , 2015, The New England journal of medicine.

[6]  Volker Hovestadt,et al.  Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities , 2015, Acta Neuropathologica.

[7]  Pieter Wesseling,et al.  IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO , 2015, Acta Neuropathologica.

[8]  D. Aisner,et al.  BRAF VE1 Immunoreactivity Patterns in Epithelioid Glioblastomas Positive for BRAF V600E Mutation , 2015, The American journal of surgical pathology.

[9]  David T. W. Jones,et al.  Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers , 2015, Acta Neuropathologica.

[10]  P. Burger,et al.  High rate of concurrent BRAF-KIAA1549 gene fusion and 1p deletion in disseminated oligodendroglioma-like leptomeningeal neoplasms (DOLN) , 2015, Acta Neuropathologica.

[11]  K. Aldape,et al.  IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II–III diffuse gliomas , 2015, Acta Neuropathologica.

[12]  M. Nikiforova,et al.  Predicting the likelihood of an isocitrate dehydrogenase 1 or 2 mutation in diagnoses of infiltrative glioma. , 2014, Neuro-oncology.

[13]  Pieter Wesseling,et al.  International Society of Neuropathology‐Haarlem Consensus Guidelines for Nervous System Tumor Classification and Grading , 2014, Brain pathology.

[14]  David T. W. Jones,et al.  Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma , 2014, Acta Neuropathologica.

[15]  Martin Sill,et al.  Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma , 2014, Acta Neuropathologica.

[16]  Li Ding,et al.  C11ORF95-RELA FUSIONS DRIVE ONCOGENIC NF-KB SIGNALING IN EPENDYMOMA. , 2014 .

[17]  D. Ellison,et al.  Clinical, radiological, histological and molecular characteristics of paediatric epithelioid glioblastoma , 2014, Neuropathology and applied neurobiology.

[18]  L. Klein-Hitpass,et al.  Supratentorial ependymomas of childhood carry C11orf95–RELA fusions leading to pathological activation of the NF-κB signaling pathway , 2014, Acta Neuropathologica.

[19]  Li Ding,et al.  C11orf95-RELA fusions drive oncogenic NF-κB signaling in ependymoma , 2014, Nature.

[20]  Darell D. Bigner,et al.  Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas , 2014, Oncotarget.

[21]  Erin K. Hedlund,et al.  Erratum: C11orf95-RELA fusions drive oncogenic NF-ΰ B signalling in ependymoma (Nature (2014) 506 (451-455 ) DOI:10.1038/nature13109) , 2014 .

[22]  M. Rosenblum,et al.  Mixed glioma with molecular features of composite oligodendroglioma and astrocytoma: a true “oligoastrocytoma”? , 2014, Acta Neuropathologica.

[23]  C. Suter,et al.  Oligoastrocytomas: throwing the baby out with the bathwater? , 2014, Acta Neuropathologica.

[24]  David T. W. Jones,et al.  ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma , 2014, Acta Neuropathologica.

[25]  M. Rosenblum,et al.  Multinodular and Vacuolating Neuronal Tumors of the Cerebrum: 10 Cases of a Distinctive Seizure‐Associated Lesion , 2013, Brain pathology.

[26]  P. Kleihues,et al.  TERT promoter mutations in primary and secondary glioblastomas , 2013, Acta Neuropathologica.

[27]  D. Aisner,et al.  Epithelioid GBMs Show a High Percentage of BRAF V600E Mutation , 2013, The American journal of surgical pathology.

[28]  Liliana Goumnerova,et al.  Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1 , 2013, Proceedings of the National Academy of Sciences.

[29]  Heather L. Mulder,et al.  Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas , 2013, Nature Genetics.

[30]  David T. W. Jones,et al.  Meningeal hemangiopericytoma and solitary fibrous tumors carry the NAB2-STAT6 fusion and can be diagnosed by nuclear expression of STAT6 protein , 2013, Acta Neuropathologica.

[31]  Arie Perry,et al.  Diagnostic implications of IDH1-R132H and OLIG2 expression patterns in rare and challenging glioblastoma variants , 2013, Modern Pathology.

[32]  K. Pienta,et al.  Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing , 2013, Nature Genetics.

[33]  Daniel Auclair,et al.  Whole exome sequencing identifies a recurrent NAB2-STAT6 fusion in solitary fibrous tumors , 2013, Nature Genetics.

[34]  P. Kleihues,et al.  The Definition of Primary and Secondary Glioblastoma , 2012, Clinical Cancer Research.

[35]  D. Louis The next step in brain tumor classification: “Let us now praise famous men”… or molecules? , 2012, Acta Neuropathologica.

[36]  M. Rosenblum,et al.  Disseminated oligodendroglial-like leptomeningeal tumor of childhood: a distinctive clinicopathologic entity , 2012, Acta Neuropathologica.

[37]  P. Varlet,et al.  Solitary Fibrous Tumors and Hemangiopericytomas of the Meninges: Overlapping Pathological Features and Common Prognostic Factors Suggest the Same Spectrum of Tumors , 2012, Brain pathology.

[38]  David T. W. Jones,et al.  K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas , 2012, Acta Neuropathologica.

[39]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[40]  Scott L. Pomeroy,et al.  Molecular subgroups of medulloblastoma: the current consensus , 2011, Acta Neuropathologica.

[41]  R. Siebert,et al.  Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. , 2011, The American journal of surgical pathology.

[42]  Richard G Grundy,et al.  Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts , 2011, Journal of Negative Results in BioMedicine.

[43]  Arie Perry,et al.  Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups , 2011, Acta Neuropathologica.

[44]  H. Heinzl,et al.  Incidence of atypical teratoid/rhabdoid tumors in children , 2010, Cancer.

[45]  Martin J. Bent,et al.  Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective , 2010, Acta Neuropathologica.

[46]  K. Newell,et al.  Epithelioid Versus Rhabdoid Glioblastomas Are Distinguished by Monosomy 22 and Immunohistochemical Expression of INI-1 but not Claudin 6 , 2010, The American journal of surgical pathology.

[47]  C. Miller,et al.  Malignant Gliomas with Primitive Neuroectodermal Tumor‐like Components: A Clinicopathologic and Genetic Study of 53 Cases , 2009, Brain pathology.

[48]  A. Judkins Immunohistochemistry of INI1 Expression: A New Tool for Old Challenges in CNS and Soft Tissue Pathology , 2007, Advances in anatomic pathology.

[49]  J. Biegel Molecular genetics of atypical teratoid/rhabdoid tumors , 2006 .

[50]  P. Kleihues,et al.  Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. , 2005, Journal of neuropathology and experimental neurology.

[51]  B. Scheithauer,et al.  Oligodendrogliomas: Reproducibility and Prognostic Value of Histologic Diagnosis and Grading , 2001, Journal of neuropathology and experimental neurology.

[52]  B. Scheithauer,et al.  Meningioma grading: an analysis of histologic parameters. , 1997, The American journal of surgical pathology.

[53]  J. Huisman The Netherlands , 1996, The Lancet.