The Role of Adsorbate–Adsorbate Interactions in the Rate Controlling Step and the Most Abundant Reaction Intermediate of NH3 Decomposition on Ru

N–N adsorbate–adsorbate interactions on a Ru(0001) surface are first estimated using quantum mechanical density functional theory (DFT) calculations, and subsequently incorporated, for the first time, in a detailed microkinetic model for NH3 decomposition on Ru using the unity bond index-quadratic exponential potential (UBI–QEP) method. DFT simulations indicate that the cross N–H interactions are relatively small. Microkinetic model predictions are compared to ultra-high vacuum temperature programmed desorption and atmospheric fixed bed reactor data. The microkinetic model with N–N interactions captures the experimental features quantitatively. It is shown that the N–N interactions significantly alter the rate determining step, the most abundant reaction intermediate, and the maximum N*-coverage, compared to mechanisms that ignore adsorbate–adsorbate interactions.

[1]  G. Ertl Heterogeneous catalysis on the atomic scale , 2001 .

[2]  K. Jacobi Nitrogen on Ruthenium Single-Crystal Surfaces , 2000 .

[3]  K. Christmann,et al.  The adsorption of hydrogen on a ruthenium (101̄0) surface , 1989 .

[4]  M. Bradford,et al.  Kinetics of NH3Decomposition over Well Dispersed Ru , 1997 .

[5]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[6]  G. Ertl,et al.  Microkinetic analysis of temperature-programmed experiments in a microreactor flow system , 1997 .

[7]  H. Rauscher,et al.  Adsorption and decomposition of hydrazine on Ru(001) , 1993 .

[8]  D. Goodman,et al.  Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications , 2001 .

[9]  G. Ertl,et al.  Vibrations, coverage, and lateral order of atomic nitrogen and formation of NH3 on Ru(10̅̅10) , 1997 .

[10]  Young K. Park,et al.  A GENERALIZED APPROACH FOR PREDICTING COVERAGE-DEPENDENT REACTION PARAMETERS OF COMPLEX SURFACE REACTIONS : APPLICATION TO H2 OXIDATION OVER PLATINUM , 1999 .

[11]  Dale F. Rudd,et al.  The Microkinetics of heterogeneous catalysis , 1993 .

[12]  Michel Boudart,et al.  Kinetics of Heterogeneous Catalytic Reactions , 1984 .

[13]  S. Dahl,et al.  Dissociative adsorption of N2 on ru(0001): A surface reaction totally dominated by steps , 2000 .

[14]  Edmund G Seebauer,et al.  Porous anodic alumina microreactors for production of hydrogen from ammonia , 2004 .

[15]  G. Ertl,et al.  Decomposition of NH3 on Ru(1121) , 1996 .

[16]  G. Ertl,et al.  Dissociative chemisorption of nitrogen on Ru(0001) , 1993 .

[17]  B S Clausen,et al.  Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. , 2001, Journal of the American Chemical Society.

[18]  S. Dahl,et al.  The Synthesis of Ammonia over a Ruthenium Single Crystal , 1998 .

[19]  G. Ertl,et al.  Sticking coefficient for dissociative adsorption of N2 on Ru single‐crystal surfaces , 1996 .

[20]  Young K. Park,et al.  Construction and optimization of complex surface‐reaction mechanisms , 2000 .

[21]  W. H. Weinberg,et al.  Steady-state decomposition of ammonia on the ruthenium(001) surface , 1987 .

[22]  Stoltze,et al.  Bridging the "pressure gap" between ultrahigh-vacuum surface physics and high-pressure catalysis. , 1985, Physical review letters.

[23]  Mortensen,et al.  Dynamics of high-barrier surface reactions: laser-assisted associative desorption of N2 from Ru(0001) , 2000, Physical review letters.

[24]  M. Pruski,et al.  Structure Sensitive Hydrogen Adsorption: Effect of Ag on Ru/SiO2Catalysts , 1998 .

[25]  G. Ertl,et al.  Coverage, lateral order, and vibrations of atomic nitrogen on Ru(0001) , 1996 .

[26]  G. Ertl,et al.  The Kinetics of Ammonia Synthesis over Ru-Based Catalysts: 1. The Dissociative Chemisorption and Associative Desorption of N2 , 1997 .

[27]  A. Luntz,et al.  Coverage dependence of activation barriers: Nitrogen on Ru(0001) , 2000 .

[28]  J. Nørskov,et al.  Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis , 2001 .

[29]  F. Haber,et al.  Über Bildung von Ammoniak aus den Elementen. (Vorläufige Mitteilung.) , 1905 .

[30]  S. Dahl,et al.  Surface science based microkinetic analysis of ammonia synthesis over ruthenium catalysts , 2000 .

[31]  J. Nørskov,et al.  Density Functional Calculations of N2Adsorption and Dissociation on a Ru(0001) Surface , 1997 .

[32]  F. Haber,et al.  Über die Bildung von Ammoniak den Elementen , 1905 .

[33]  J. Nørskov,et al.  Ammonia synthesis over a Ru(0001) surface studied by density functional calculations , 2003 .

[34]  A. Luntz,et al.  Observation of metastable atomic nitrogen adsorbed on Ru(0001) , 2000 .

[35]  I. Chorkendorff,et al.  The Interaction of Nitrogen with the (111) Surface of Iron at Low and at Elevated Pressures , 1997 .

[36]  The adsorption of atomic nitrogen on Ru(0001): geometry and energetics , 1996, cond-mat/9612024.

[37]  A. Luntz,et al.  Laser assisted associative desorption of N2 and CO from Ru(0001) , 2001 .

[38]  T. S. King,et al.  Hydrogen adsorption states on silica-supported Ru–Ag and Ru–Cu bimetallic catalysts investigated via microcalorimetry , 1998 .

[39]  P. Hu,et al.  A density functional theory study of stepwise addition reactions in ammonia synthesis on Ru(0001) , 2002 .

[40]  A density-functional study of the interaction of nitrogen with ruthenium clusters , 1999 .