A Cas3-base editing tool for targetable in vivo mutagenesis

[1]  H. Stahlberg,et al.  Allosteric control of type I-A CRISPR-Cas3 complexes and establishment as effective nucleic acid detection and human genome editing tools. , 2022, Molecular cell.

[2]  Yingxiu Cao,et al.  Type I-F CRISPR-PAIR platform for multi-mode regulation to boost extracellular electron transfer in Shewanella oneidensis , 2022, iScience.

[3]  N. Kodera,et al.  Dynamic mechanisms of CRISPR interference by Escherichia coli CRISPR-Cas3 , 2021, Nature Communications.

[4]  Yuriko Osakabe,et al.  Genome editing in mammalian cells using the CRISPR type I-D nuclease , 2021, Nucleic acids research.

[5]  C. Smolke,et al.  Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering , 2021, Nature Communications.

[6]  J. Keasling,et al.  A synthetic RNA-mediated evolution system in yeast , 2021, bioRxiv.

[7]  V. de Lorenzo,et al.  In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9 , 2020, Nature Communications.

[8]  Yuriko Osakabe,et al.  Genome editing in plants using CRISPR type I-D nuclease , 2020, Communications Biology.

[9]  E. Crawford,et al.  A compact Cascade–Cas3 system for targeted genome engineering , 2020, Nature Methods.

[10]  Suresh Sudarsan,et al.  Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production , 2020, Metabolic engineering.

[11]  J. Thevelein,et al.  Simultaneous secretion of seven lignocellulolytic enzymes by an industrial second-generation yeast strain enables efficient ethanol production from multiple polymeric substrates. , 2020, Metabolic engineering.

[12]  Jamie L. Marshall,et al.  Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor , 2019, Nature Biotechnology.

[13]  Jamie L. Marshall,et al.  Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor , 2019, Nature Biotechnology.

[14]  H. Morisaka,et al.  CRISPR-Cas3 induces broad and unidirectional genome editing in human cells , 2019, Nature Communications.

[15]  Leslie S. Edwards,et al.  Harnessing type I CRISPR–Cas systems for genome engineering in human cells , 2019, Nature Biotechnology.

[16]  R. Barrangou,et al.  The repurposing of type I-E CRISPR-Cascade for gene activation in plants , 2019, Communications Biology.

[17]  V. Bansal,et al.  Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing , 2019, Nature Communications.

[18]  Timothy E. Reddy,et al.  Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells , 2019, Nature Biotechnology.

[19]  Peter L. Freddolino,et al.  Introducing a Spectrum of Long-Range Genomic Deletions in Human Embryonic Stem Cells Using Type I CRISPR-Cas. , 2019, Molecular cell.

[20]  L. Steinmetz,et al.  Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos , 2019, Science.

[21]  Q. Gao,et al.  Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice , 2019, Science.

[22]  Adrian T. Grzybowski,et al.  Complete biosynthesis of cannabinoids and their unnatural analogues in yeast , 2019, Nature.

[23]  Arjun Ravikumar,et al.  Scalable, Continuous Evolution of Genes at Mutation Rates above Genomic Error Thresholds , 2018, Cell.

[24]  J. Hahn,et al.  Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production , 2018, Applied Microbiology and Biotechnology.

[25]  Hunter B. Fraser,et al.  Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing , 2018, Cell.

[26]  H. Fraser,et al.  Functional genetic variants revealed by massively parallel precise genome editing. Sharon et al , 2018 .

[27]  Jennifer A. Doudna,et al.  CRISPR-Cas guides the future of genetic engineering , 2018, Science.

[28]  John E. Dueber,et al.  CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window , 2018, Nature.

[29]  Minh Duc Cao,et al.  npInv: accurate detection and genotyping of inversions using long read sub-alignment , 2018, BMC Bioinformatics.

[30]  Matthew D Shoulders,et al.  A Processive Protein Chimera Introduces Mutations across Defined DNA Regions In Vivo. , 2018, Journal of the American Chemical Society.

[31]  M. Liao,et al.  Structure basis for RNA-guided DNA degradation by Cascade and Cas3 , 2018, Science.

[32]  J. Keasling,et al.  CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. , 2018, Metabolic engineering.

[33]  Yun Wang,et al.  Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods , 2018, Nature Communications.

[34]  B. Mueller‐Roeber,et al.  L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast , 2018, Nature Communications.

[35]  Jing Liang,et al.  Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision , 2018, Nature Biotechnology.

[36]  D. Bartel,et al.  New CRISPR Mutagenesis Strategies Reveal Variation in Repair Mechanisms among Fungi , 2018, mSphere.

[37]  Robert P. St.Onge,et al.  Multiplexed precision genome editing with trackable genomic barcodes in yeast , 2018, Nature Biotechnology.

[38]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[39]  Michael C. Schatz,et al.  Accurate detection of complex structural variations using single molecule sequencing , 2017, Nature Methods.

[40]  Jonathan Kim,et al.  Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System , 2017, Cell.

[41]  Eugene V Koonin,et al.  Diversity, classification and evolution of CRISPR-Cas systems. , 2017, Current opinion in microbiology.

[42]  Ryan T Gill,et al.  Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering , 2016, Nature Biotechnology.

[43]  Jay D. Keasling,et al.  A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae , 2016, Nucleic acids research.

[44]  J. Nicaud,et al.  Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. , 2016, Metabolic engineering.

[45]  R. Riedl,et al.  High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines , 2016, PLoS genetics.

[46]  Gaelen T. Hess,et al.  Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells , 2016, Nature Methods.

[47]  Hal S Alper,et al.  In vivo continuous evolution of genes and pathways in yeast , 2016, Nature Communications.

[48]  Yan Song,et al.  Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells , 2016, Nature Methods.

[49]  A. Kondo,et al.  Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems , 2016, Science.

[50]  Lucas B. Harrington,et al.  CRISPR Immunological Memory Requires a Host Factor for Specificity. , 2016, Molecular cell.

[51]  D. Tzamarias,et al.  A novel CRE recombinase assay for quantification of GAL10-non coding RNA suppression on transcriptional leakage. , 2016, Biochemical and biophysical research communications.

[52]  David R. Liu,et al.  Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage , 2016, Nature.

[53]  Chase L. Beisel,et al.  Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems. , 2016, Molecular cell.

[54]  A. Tripathi,et al.  Structural elements that govern Sec14-like PITP sensitivities to potent small molecule inhibitors[S] , 2016, Journal of Lipid Research.

[55]  Russell V. Lenth,et al.  Least-Squares Means: The R Package lsmeans , 2016 .

[56]  Jennifer A. Doudna,et al.  Biology and Applications of CRISPR Systems: Harnessing Nature’s Toolbox for Genome Engineering , 2016, Cell.

[57]  Jianhui Gong,et al.  SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes , 2016, Genome research.

[58]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[59]  Malcolm F. White,et al.  Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity , 2015, FEMS microbiology reviews.

[60]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[61]  P. J. Bhat,et al.  Stochastic galactokinase expression underlies GAL gene induction in a GAL3 mutant of Saccharomyces cerevisiae , 2014, The FEBS journal.

[62]  Merja Penttilä,et al.  Yeast oligo-mediated genome engineering (YOGE). , 2013, ACS synthetic biology.

[63]  Ronald W. Davis,et al.  PITPs as Targets for Selectively Interfering With Phosphoinositide Signaling in Cells , 2013, Nature chemical biology.

[64]  Scott Bailey,et al.  In Vitro Reconstitution of an Escherichia coli RNA-guided Immune System Reveals Unidirectional, ATP-dependent Degradation of DNA Target* , 2013, The Journal of Biological Chemistry.

[65]  J. Keasling,et al.  High-level semi-synthetic production of the potent antimalarial artemisinin , 2013, Nature.

[66]  Narendra Maheshri,et al.  Harnessing mutagenic homologous recombination for targeted mutagenesis in vivo by TaGTEAM , 2013, Nucleic acids research.

[67]  Konstantin Severinov,et al.  CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. , 2012, Molecular cell.

[68]  P. D. Rijk,et al.  Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing , 2011, Nature Biotechnology.

[69]  N. Qureshi,et al.  Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars , 2011, Journal of Industrial Microbiology & Biotechnology.

[70]  Albert J R Heck,et al.  Structural basis for CRISPR RNA-guided DNA recognition by Cascade , 2011, Nature Structural &Molecular Biology.

[71]  Philippe Horvath,et al.  Cas3 is a single‐stranded DNA nuclease and ATP‐dependent helicase in the CRISPR/Cas immune system , 2011, The EMBO journal.

[72]  S. Rivera,et al.  Determination of carotenoids by liquid chromatography/mass spectrometry: effect of several dopants , 2011, Analytical and bioanalytical chemistry.

[73]  David R. Liu,et al.  A System for the Continuous Directed Evolution of Biomolecules , 2011, Nature.

[74]  Jens Nielsen,et al.  Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. , 2010, Nature communications.

[75]  V. Bankaitis,et al.  The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. , 2010, Trends in biochemical sciences.

[76]  Willem P C Stemmer,et al.  A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner , 2009, Nature Biotechnology.

[77]  J. François,et al.  Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae , 2009, BMC Molecular Biology.

[78]  Farren J. Isaacs,et al.  Programming cells by multiplex genome engineering and accelerated evolution , 2009, Nature.

[79]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[80]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[81]  Andrew W. Murray,et al.  Estimating the Per-Base-Pair Mutation Rate in the Yeast Saccharomyces cerevisiae , 2008, Genetics.

[82]  C. Batt,et al.  Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris , 2007, Applied Microbiology and Biotechnology.

[83]  J. Bader,et al.  A robust toolkit for functional profiling of the yeast genome. , 2004, Molecular cell.

[84]  Duboc,et al.  An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. , 2000, Enzyme and microbial technology.

[85]  W. Stahl,et al.  Lycopene: Antioxidant and Biological Effects and its Bioavailability in the Human , 1998, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[86]  G A Colditz,et al.  Intake of carotenoids and retinol in relation to risk of prostate cancer. , 1995, Journal of the National Cancer Institute.

[87]  Z. Wang,et al.  Overproduction and characterization of the uracil-DNA glycosylase inhibitor of bacteriophage PBS2. , 1991, Gene.

[88]  J. Miller,et al.  A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[89]  David R. Liu,et al.  CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes , 2017, Cell.

[90]  K. Entian,et al.  25 Yeast Genetic Strain and Plasmid Collections , 2007 .

[91]  P. Foster In vivo mutagenesis. , 1991, Methods in enzymology.

[92]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .