Simple wave solutions for the Maxwell equations in bianisotropic, nonlinear media, with application to oblique incidence

Using simple waves and six-vector formalism, the propagation of electromagnetic waves in nonlinear, bianisotropic, nondispersive, homogeneous media is analyzed. The Maxwell equations are formulated as an eigenvalue problem, whose solutions are equivalent to the characteristic directions of the wave front. Oblique incidence of plane waves in vacuum on a half space of nonlinear material is solved, giving reflection and transmission operators for all angles of incidence and all polarizations of the incident field. A condition on Brewster angles is derived.

[1]  M. Pryce,et al.  Wave Propagation and Group Velocity , 1961, Nature.

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  V. P. Korobeinikov,et al.  Formation and decay of electromagnetic shock waves , 1969 .

[4]  J. Kazakia,et al.  Propagation of electromagnetic waves in a nonlinear dielectric slab , 1975 .

[5]  Akhlesh Lakhtakia,et al.  Are linear, nonreciprocal, biisotropic media forbidden? , 1994 .

[6]  Direct and inverse scattering for transient electromagnetic waves in nonlinear media , 1998 .

[7]  J. W. Humberston Classical mechanics , 1980, Nature.

[8]  J. Veldhuis,et al.  Reflection and refraction of electromagnetic waves by the plane boundary of a non-linear medium: application of the simple-wave theory , 1978 .

[9]  Ismo V. Lindell,et al.  Electromagnetic Waves in Chiral and Bi-Isotropic Media , 1994 .

[10]  Ari Sihvola,et al.  Electromagnetic Waves in Bi-Isotropic and Chiral Media , 1994 .

[11]  Ljf Lambert Broer,et al.  On simple waves in non-linear dielectric media , 1964 .

[12]  K.A. Michalski,et al.  Electromagnetic wave theory , 1987, Proceedings of the IEEE.

[13]  J. David Logan,et al.  An Introduction to Nonlinear Partial Differential Equations , 1994 .

[14]  Time domain theory of the macroscopic Maxwell equations , 1997 .

[15]  Anders Karlsson,et al.  Constitutive Relations, Dissipation, and Reciprocity for the Maxwell Equations in the Time Domain , 1992 .

[16]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[17]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[18]  E. Dill,et al.  Thermodynamic restrictions on the constitutive equations of electromagnetic theory , 1971 .

[19]  D. Sjöberg Reconstruction of nonlinear material properties for homogeneous, isotropic slabs using electromagnetic waves , 1999 .

[20]  J. Jackson Classical Electrodynamics, 3rd Edition , 1998 .

[21]  K. Budden The constitutive relations , 1985 .

[22]  R. D. Richtmyer,et al.  Principles of Advanced Mathematical Physics , 1978 .

[23]  R. E. Raab,et al.  On the existence of linear non-reciprocal bi-isotropic (NRBI) media , 1997 .

[24]  Ari Sihvola Are nonreciprocal bi-isotropic media forbidden indeed? , 1995 .

[25]  A. Jeffrey Non-dispersive wave propagation in nonlinear dielectrics , 1968 .

[26]  L. Hörmander,et al.  Lectures on Nonlinear Hyperbolic Differential Equations , 1997 .

[27]  H. C. Corben,et al.  Classical Mechanics (2nd ed.) , 1961 .

[28]  Ljf Lambert Broer Wave propagation in non-linear media , 1965 .

[29]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[30]  Ari Sihvola,et al.  Six-vector formalism in electromagnetics of bi-anisotropic media , 1995 .

[31]  E. J. Post,et al.  Formal Structure of Electromagnetics , 1963 .

[32]  C. Rogers,et al.  Electromagnetic wave propagation in non-linear dielectric media , 1977 .

[33]  Gérard A. Maugin,et al.  Electrodynamics Of Continua , 1990 .

[34]  A. Sihvola,et al.  Plane‐wave reflection from a bi‐isotropic (nonreciprocal chiral) interface , 1992 .