Mathematical and Computer Modelling, 34 : 2000, 1289-1305 STABILITY OF MICROSTRUCTURES FOR SOME MARTENSITIC TRANSFORMATIONS

We analyze the stability of laminated microstructure for martensitic crystals that undergo cubic to trigonal, orthorhombic to triclinic, and trigonal to monoclinic transformations. We show that the microstructure is unique and stable for all laminates except when the lattice parameters satisfy certain identities.

[1]  Georg Dolzmann,et al.  Numerical Computation of Rank-One Convex Envelopes , 1999 .

[2]  Carsten Carstensen,et al.  Numerical solution of the scalar double-well problem allowing microstructure , 1997, Math. Comput..

[3]  R. D. James,et al.  Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[4]  Martin Kruzík,et al.  Numerical Approach to Double Well Problems , 1998 .

[5]  Bo Li,et al.  Nonconforming finite element approximation of crystalline microstructure , 1998, Math. Comput..

[6]  P. P. C. Carstensen Adaptive algorithms for scalar non-convex variational problems , 2001 .

[7]  David Kinderlehrer,et al.  Equilibrium configurations of crystals , 1988 .

[8]  Mitchell Luskin,et al.  Analysis of the finite element approximation of microstructure in micromagnetics , 1992 .

[9]  Zhiping Li,et al.  Simultaneous numerical approximation of microstructures and relaxed minimizers , 1997 .

[10]  Richard D. James,et al.  Martensitic transformations and shape-memory materials ☆ , 2000 .

[11]  Approximation of infima in the calculus of variations , 1998 .

[12]  Mitchell Luskin,et al.  Approximation of a laminated microstructure for a rotationally invariant, double well energy density , 1996 .

[13]  M. Luskin On the Stability of Microstructure for General Martensitic Transformations , 2000 .

[14]  D. Kinderlehrer,et al.  Numerical analysis of oscillations in multiple well problems , 1995 .

[15]  Mitchell Luskin,et al.  The Simply Laminated Microstructure in Martensitic Crystals that Undergo a Cubic‐to‐Orthorhombic Phase Transformation , 1999 .

[16]  M. Luskin,et al.  Stability of microstructure for tetragonal to monoclinic martensitic transformations , 2000 .

[17]  Mitchell Luskin,et al.  On the computation of crystalline microstructure , 1996, Acta Numerica.

[18]  Pablo Pedregal,et al.  On the numerical analysis of non-convex variational problems , 1996 .

[19]  T. Roub Numerical Approximation of Relaxed Variational Problems , 1996 .

[20]  Mitchell Luskin,et al.  Approximation of a Martensitic Laminate with Varying Volume Fractions , 1999 .

[21]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[22]  B. Li,et al.  Finite Element Analysis of Microstructure for the Cubic to Tetragonal Transformation , 1998 .