A Family of p-ary Binomial Bent Functions

For a prime p with p ≡ 3(mod 4) and an odd number m, the Bentness of the p-ary binomial function $f_{a,b}(x)={\\ m Tr}_{1}^n(ax^{p^m-1})+{\\ m Tr}_{1}^2(bx^{\\frac{p^n-1}{4}})$ is characterized, where n=2m, $a\\in \\bF_{p^n}^*$, and $b\\in \\bF_{p^2}^*$. The necessary and sufficient conditions of ƒa,b(x) being Bent are established respectively by an exponential sum and two sequences related to a and b. For the special case of p=3, we further characterize the Bentness of the ternary function ƒa,b(x) by the Hamming weight of a sequence.

[1]  Xiang-Dong Hou,et al.  p-Ary and q-ary versions of certain results about bent functions and resilient functions , 2004, Finite Fields Their Appl..

[2]  Gregor Leander,et al.  Monomial bent functions , 2006, IEEE Transactions on Information Theory.

[3]  Anne Canteaut,et al.  Construction of bent functions via Niho power functions , 2006, J. Comb. Theory, Ser. A.

[4]  Rudolf Lide,et al.  Finite fields , 1983 .

[5]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[6]  Tor Helleseth,et al.  Monomial and quadratic bent functions over the finite fields of odd characteristic , 2006, IEEE Transactions on Information Theory.

[7]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[8]  Cunsheng Ding,et al.  A family of skew Hadamard difference sets , 2006, J. Comb. Theory, Ser. A.

[9]  Tor Helleseth,et al.  New binomial bent functions over the finite fields of odd characteristic , 2010, IEEE Trans. Inf. Theory.

[10]  Cunsheng Ding,et al.  Highly nonlinear mappings , 2004, J. Complex..

[11]  P. Vijay Kumar,et al.  Generalized Bent Functions and Their Properties , 1985, J. Comb. Theory, Ser. A.

[12]  Pascale Charpin,et al.  Cubic Monomial Bent Functions: A Subclass of M , 2008, SIAM J. Discret. Math..

[13]  Robert S. Coulter,et al.  Planar Functions and Planes of Lenz-Barlotti Class II , 1997, Des. Codes Cryptogr..

[14]  Anne Canteaut,et al.  A new class of monomial bent functions , 2006, 2006 IEEE International Symposium on Information Theory.

[15]  Claude Carlet,et al.  Boolean Functions for Cryptography and Error-Correcting Codes , 2010, Boolean Models and Methods.

[16]  Timo Neumann,et al.  BENT FUNCTIONS , 2006 .

[17]  J. Dillon Elementary Hadamard Difference Sets , 1974 .

[18]  Qing Xiang Maximally Nonlinear Functions and Bent Functions , 1999, Des. Codes Cryptogr..

[19]  Sihem Mesnager A new class of Bent functions in Polynomial Forms , 2008, IACR Cryptol. ePrint Arch..

[20]  Guang Gong,et al.  Hyperbent Functions, Kloosterman Sums, and Dickson Polynomials , 2008, IEEE Transactions on Information Theory.