Image analysis and statistical inference in neuroimaging with R

R is a language and environment for statistical computing and graphics. It can be considered an alternative implementation of the S language developed in the 1970s and 1980s for data analysis and graphics (Becker and Chambers, 1984; Becker et al., 1988). The R language is part of the GNU project and offers versions that compile and run on almost every major operating system currently available. We highlight several R packages built specifically for the analysis of neuroimaging data in the context of functional MRI, diffusion tensor imaging, and dynamic contrast-enhanced MRI. We review their methodology and give an overview of their capabilities for neuroimaging. In addition we summarize some of the current activities in the area of neuroimaging software development in R.

[1]  Peter J. Bickel,et al.  S: An Interactive Environment for Data Analysis and Graphics , 1984 .

[2]  Peter E. Rossi,et al.  Bayesian Statistics and Marketing , 2005 .

[3]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[4]  John M. Chambers,et al.  Software for Data Analysis: Programming with R , 2008 .

[5]  Guang-Zhong Yang,et al.  Bayesian Methods for Pharmacokinetic Models in Dynamic Contrast-Enhanced Magnetic Resonance Imaging , 2006, IEEE Transactions on Medical Imaging.

[6]  James V. Stone Independent component analysis: an introduction , 2002, Trends in Cognitive Sciences.

[7]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.

[8]  Keith J. Worsley,et al.  Spatial smoothing of autocorrelations to control the degrees of freedom in fMRI analysis , 2005, NeuroImage.

[9]  Geoffrey J. M. Parker,et al.  Tracer Kinetic Modelling for T1-Weighted DCE-MRI , 2005 .

[10]  Allan R. Wilks,et al.  The new S language: a programming environment for data analysis and graphics , 1988 .

[11]  Alan Jackson,et al.  Dynamic contrast-enhanced magnetic resonance imaging in oncology , 2005 .

[12]  Jonathan D. Clayden,et al.  Shape Modelling for Tract Selection , 2009, MICCAI.

[13]  H. Weinmann,et al.  Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. , 1984, Physiological chemistry and physics and medical NMR.

[14]  Amos Storkey,et al.  TractoR: Magnetic Resonance Imaging and Tractography with R , 2011 .

[15]  Didier G. Leibovici,et al.  Spatio-Temporal Multiway Data Decomposition Using Principal Tensor Analysis on k-Modes: The R Package PTAk , 2010 .

[16]  Karsten Tabelow,et al.  Structural adaptive segmentation for statistical parametric mapping , 2010, NeuroImage.

[17]  Adelino R Ferreira da Silva A Bayesian multilevel model for fMRI data analysis. , 2011, Computer methods and programs in biomedicine.

[18]  Karl J. Friston,et al.  Unified SPM–ICA for fMRI analysis , 2005, NeuroImage.

[19]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .

[20]  K. Jarrod Millman,et al.  Analysis of Functional Magnetic Resonance Imaging in Python , 2007, Computing in Science & Engineering.

[21]  Karsten Tabelow,et al.  Analyzing fMRI experiments with structural adaptive smoothing procedures , 2006, NeuroImage.

[22]  Michel Dojat,et al.  Temporal and Spatial Independent Component Analysis for fMRI data sets embedded in a R package , 2010, 1012.0269.

[23]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[24]  Mark E. Bastin,et al.  A Probabilistic Model-Based Approach to Consistent White Matter Tract Segmentation , 2007, IEEE Transactions on Medical Imaging.

[25]  Guang-Zhong Yang,et al.  A Bayesian hierarchical model for the analysis of a longitudinal dynamic contrast‐enhanced MRI oncology study , 2007, Magnetic resonance in medicine.

[26]  Karsten Tabelow,et al.  Imaging: the R package dti , 2008 .

[27]  Geoffrey J. M. Parker,et al.  Measuring contrast agent concentration in T1-weighted dynamic contrast-enhanced MRI , 2005 .

[28]  G. Krestin,et al.  Pharmacokinetics of Gd-DTPA in patients with chronic renal failure. , 1991, Investigative radiology.

[29]  Karsten Tabelow,et al.  Structural Adaptive Smoothing in Diffusion Tensor Imaging: The R Package dti , 2009 .

[30]  John G. Neuhoff,et al.  Spatiotemporal Pattern of Neural Processing in the Human Auditory Cortex , 2002, Science.

[31]  A. Anderson,et al.  Reduction of noise in diffusion tensor images using anisotropic smoothing , 2005, Magnetic resonance in medicine.

[32]  various,et al.  Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology , 2011 .

[33]  P. Tofts,et al.  Measurement of the blood‐brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts , 1991, Magnetic resonance in medicine.

[34]  Karsten Tabelow,et al.  Diffusion tensor imaging: Structural adaptive smoothing , 2008, NeuroImage.

[35]  A. M. McIntosh,et al.  Atlas-based reference tracts improve automatic white matter segmentation with neighbourhood tractography , 2022 .

[36]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[37]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[38]  K. Tabelow,et al.  Modeling the orientation distribution function by mixtures of angular central Gaussian distributions , 2012, Journal of Neuroscience Methods.

[39]  A. Jackson,et al.  Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors , 2000, Journal of magnetic resonance imaging : JMRI.

[40]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[41]  V D Calhoun,et al.  Spatial and temporal independent component analysis of functional MRI data containing a pair of task‐related waveforms , 2001, Human brain mapping.

[42]  Richard A. Harshman,et al.  Noise Reduction in BOLD-Based fMRI Using Component Analysis , 2002, NeuroImage.

[43]  Mark E. Bastin,et al.  Improved segmentation reproducibility in group tractography using a quantitative tract similarity measure , 2006, NeuroImage.

[44]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[45]  Mark E. Bastin,et al.  Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach , 2009, NeuroImage.

[46]  J. Polzehl,et al.  Functional MRI of the zebra finch brain during song stimulation suggests a lateralized response topography , 2007, Proceedings of the National Academy of Sciences.

[47]  David Atkinson,et al.  Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI , 2008, Physics in medicine and biology.

[48]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[49]  Ingrid Christoffels,et al.  Activated region fitting: A robust high‐power method for fMRI analysis using parameterized regions of activation , 2009, Human brain mapping.

[50]  E. Rostrup,et al.  Measurement of the arterial concentration of Gd‐DTPA using MRI: A step toward quantitative perfusion imaging , 1996, Magnetic resonance in medicine.

[51]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[52]  Karsten Tabelow,et al.  Accurate Localization of Brain Activity in Presurgical fMRI by Structure Adaptive Smoothing , 2008, IEEE Transactions on Medical Imaging.

[53]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[54]  Karsten Tabelow,et al.  High-resolution fMRI: Overcoming the signal-to-noise problem , 2009, Journal of Neuroscience Methods.