Differential expression of the major catalase, KatA in the two wild type Pseudomonas aeruginosa strains, PAO1 and PA14

[1]  You-Hee Cho,et al.  Dual promoters of the major catalase (KatA) govern distinct survival strategies of Pseudomonas aeruginosa , 2016, Scientific Reports.

[2]  Jason A. Papin,et al.  Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains , 2015, BMC Genomics.

[3]  S. Donaldson,et al.  Phenotypic diversity within a Pseudomonas aeruginosa population infecting an adult with cystic fibrosis , 2015, Scientific Reports.

[4]  Richard A. Moore,et al.  Generation of reactive oxygen species by lethal attacks from competing microbes , 2015, Proceedings of the National Academy of Sciences.

[5]  E. Greenberg,et al.  Strain-dependent diversity in the Pseudomonas aeruginosa quorum-sensing regulon , 2012, Proceedings of the National Academy of Sciences.

[6]  E. Burd,et al.  Rapid Killing of Acinetobacter baumannii by Polymyxins Is Mediated by a Hydroxyl Radical Death Pathway , 2012, Antimicrobial Agents and Chemotherapy.

[7]  George A. O'Toole,et al.  The CRISPR/Cas Adaptive Immune System of Pseudomonas aeruginosa Mediates Resistance to Naturally Occurring and Engineered Phages , 2012, Journal of bacteriology.

[8]  J. Hammond,et al.  Pseudomonas aeruginosa Exopolysaccharide Psl Promotes Resistance to the Biofilm Inhibitor Polysorbate 80 , 2012, Antimicrobial Agents and Chemotherapy.

[9]  Scott R. Miller,et al.  Genotypic and Phenotypic Variation in Pseudomonas aeruginosa Reveals Signatures of Secondary Infection and Mutator Activity in Certain Cystic Fibrosis Patients with Chronic Lung Infections , 2011, Infection and Immunity.

[10]  Lutz Wiehlmann,et al.  Pseudomonas aeruginosa Genomic Structure and Diversity , 2011, Front. Microbio..

[11]  G. Lau,et al.  IscR modulates catalase A (KatA) activity, peroxide resistance and full virulence of Pseudomonas aeruginosa PA14. , 2009, Journal of microbiology and biotechnology.

[12]  D. Hassett,et al.  The Major Catalase Gene (katA) of Pseudomonas aeruginosa PA14 Is under both Positive and Negative Control of the Global Transactivator OxyR in Response to Hydrogen Peroxide , 2009, Journal of bacteriology.

[13]  You-Hee Cho,et al.  Effect of PEL exopolysaccharide on the wspF mutant phenotypes in Pseudomonas aeruginosa PA14. , 2008, Journal of microbiology and biotechnology.

[14]  Shin-Young Park,et al.  Drosophila melanogaster-Based Screening for Multihost Virulence Factors of Pseudomonas aeruginosa PA14 and Identification of a Virulence-Attenuating Factor, HudA , 2008, Infection and Immunity.

[15]  H. Rabin,et al.  Pseudomonas aeruginosa Cystic Fibrosis Isolates from Individual Patients Demonstrate a Range of Levels of Lethality in Two Drosophila melanogaster Infection Models , 2008, Infection and Immunity.

[16]  D. Shin,et al.  Unusual Properties of Catalase A (KatA) of Pseudomonas aeruginosa PA14 Are Associated with Its Biofilm Peroxide Resistance , 2007, Journal of bacteriology.

[17]  D. Shin,et al.  Identification of Pseudomonas aeruginosa genes crucial for hydrogen peroxide resistance. , 2007, Journal of microbiology and biotechnology.

[18]  A. Kettle,et al.  Modeling the Reactions of Superoxide and Myeloperoxidase in the Neutrophil Phagosome , 2006, Journal of Biological Chemistry.

[19]  Li Li,et al.  Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial , 2006, Genome Biology.

[20]  You-Hee Cho,et al.  KatA, the Major Catalase, Is Critical for Osmoprotection and Virulence in Pseudomonas aeruginosa PA14 , 2005, Infection and Immunity.

[21]  S. Lory,et al.  Role of Motility and Flagellin Glycosylation in the Pathogenesis of Pseudomonas aeruginosa Burn Wound Infections , 2005, Infection and Immunity.

[22]  F. O'Gara,et al.  Genome Diversity of Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients and the Hospital Environment , 2004, Journal of Clinical Microbiology.

[23]  Douglas G Altman,et al.  The logrank test , 2004, BMJ : British Medical Journal.

[24]  Daniel G. Lee,et al.  The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Qing Yang,et al.  Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Imlay,et al.  Alkyl Hydroperoxide Reductase Is the Primary Scavenger of Endogenous Hydrogen Peroxide in Escherichia coli , 2001, Journal of bacteriology.

[27]  D. Hassett,et al.  A Protease-Resistant Catalase, KatA, Released upon Cell Lysis during Stationary Phase Is Essential for Aerobic Survival of a Pseudomonas aeruginosa oxyR Mutant at Low Cell Densities , 2000, Journal of bacteriology.

[28]  P. Stewart,et al.  Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide , 1999, Molecular microbiology.

[29]  P. Stewart,et al.  Protective Role of Catalase in Pseudomonas aeruginosa Biofilm Resistance to Hydrogen Peroxide , 1999, Applied and Environmental Microbiology.

[30]  D. Hassett,et al.  Effect of rpoS Mutation on the Stress Response and Expression of Virulence Factors in Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[31]  A. Kropinski,et al.  Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters , 1990, Journal of bacteriology.