Mining fuzzy association rules in incomplete databases

Mining quantitative association rules is a particular subject of interest in fuzzy set application theory. However, the theory generally applies to a transactional database with no missing values. A predictive algorithm is proposed in this paper in order to extrapolate (interpolate) the unknown values. A fuzzy data mining algorithm is used to discover fuzzy association rules over the extended database with filled predictive values.

[1]  J. Ross Quinlan,et al.  Combining Instance-Based and Model-Based Learning , 1993, ICML.

[2]  Weining Zhang,et al.  Mining fuzzy quantitative association rules , 1999, Proceedings 11th International Conference on Tools with Artificial Intelligence.

[3]  Siegfried Gottwald,et al.  Fuzzy Sets and Fuzzy Logic , 1993 .

[4]  Marzena Kryszkiewicz,et al.  Data mining in incomplete information systems from rough set perspective , 2000 .

[5]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[6]  Tzung-Pei Hong,et al.  Mining association rules from quantitative data , 1999, Intell. Data Anal..

[7]  Christopher J. Merz,et al.  UCI Repository of Machine Learning Databases , 1996 .

[8]  Bruno Crémilleux,et al.  Treatment of Missing Values for Association Rules , 1998, PAKDD.

[9]  Marzena Kryszkiewicz,et al.  Probabilistic Approach to Association Rules in Incomplete Databases , 2000, Web-Age Information Management.

[10]  T. Hong,et al.  Mining fuzzy sequential patterns from multiple-item transactions , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[11]  George J. Klir,et al.  Fuzzy sets and fuzzy logic , 1995 .

[12]  Michael R. Berthold,et al.  Missing Values and Learning of Fuzzy Rules , 1998, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[13]  Hans-Joachim Klein Efficient Algorithms for Approximating Answers to Queries Against Incomplete Relational Databases , 1999, KRDB.

[14]  Jerzy Stefanowski,et al.  Rough classification in incomplete information systems , 1989 .

[15]  Jef Wijsen,et al.  Neighborhood Dependencies for Prediction , 2001, PAKDD.

[16]  Ivan Bratko,et al.  Experiments in automatic learning of medical diagnostic rules , 1984 .

[17]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[18]  Marzena Kryszkiewicz,et al.  Association Rules in Incomplete Databases , 1999, PAKDD.

[19]  Volker Tresp,et al.  Training Neural Networks with Deficient Data , 1993, NIPS.

[20]  Ramakrishnan Srikant,et al.  Mining quantitative association rules in large relational tables , 1996, SIGMOD '96.

[21]  Masayuki Numao,et al.  Ordered Estimation of Missing Values , 1999, PAKDD.

[22]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.