Quantum cascade laser–based hyperspectral imaging of biological tissue

Abstract. The spectroscopy of analyte-specific molecular vibrations in tissue thin sections has opened up a path toward histopathology without the need for tissue staining. However, biomedical vibrational imaging has not yet advanced from academic research to routine histopathology due to long acquisition times for the microscopic hyperspectral images and/or cost and availability of the necessary equipment. Here we show that the combination of a fast-tuning quantum cascade laser with a microbolometer array detector allows for a rapid image acquisition and bares the potential for substantial cost reduction. A 3.1×2.8  mm2 unstained thin section of mouse jejunum has been imaged in the 9.2 to 9.7 μm wavelength range (spectral resolution ∼1  cm−1) within 5 min with diffraction limited spatial resolution. The comparison of this hyperspectral imaging approach with standard Fourier transform infrared imaging or mapping of the identical sample shows a reduction in acquisition time per wavenumber interval and image area by more than one or three orders of magnitude, respectively.

[1]  Carol J. Hirschmugl,et al.  Synchrotron infrared microspectroscopy imaging using a multi-element detector (IRMSI-MED) for diffraction-limited chemical imaging , 2007 .

[2]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[3]  David L. Wetzel,et al.  Synchrotron infrared confocal microspectroscopic spatial resolution or a customized synchrotron/focal plane array system enhances chemical imaging of biological tissue or cells , 2011 .

[4]  Rohit Bhargava,et al.  Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser. , 2012, Analytical chemistry.

[5]  Shmuel Argov,et al.  Prediction potential of IR-micro spectroscopy for colon cancer relapse. , 2010, The Analyst.

[6]  Wolfgang Petrich,et al.  Chapter 6:Data Acquisition and Analysis in Biomedical Vibrational Spectroscopy , 2010 .

[7]  P. Lerch,et al.  Infrared imaging: Synchrotrons vs. arrays, resolution vs. speed , 2006 .

[8]  Wolfgang Petrich,et al.  Rapid hyperspectral imaging in the mid-infrared , 2014, Photonics West - Biomedical Optics.

[9]  Max Diem,et al.  Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. , 2004, Biochimica et biophysica acta.

[10]  Michel Manfait,et al.  IR spectral imaging of secreted mucus: a promising new tool for the histopathological recognition of human colonic adenocarcinomas , 2010, Histopathology.

[11]  Michel Manfait,et al.  IR spectral imaging for histopathological characterization of xenografted human colon carcinomas. , 2008, Analytical chemistry.

[12]  Paul Dumas,et al.  Chemical imaging of biological tissue with synchrotron infrared light. , 2006, Biochimica et biophysica acta.

[13]  S. Argov,et al.  Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients. , 2002, Journal of biomedical optics.

[14]  Cyril Petibois,et al.  Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology. , 2006, Trends in biotechnology.

[15]  S. Argov,et al.  Detection of abnormal proliferation in histologically ‘normal’ colonic biopsies using FTIR‐microspectroscopy , 2004, Scandinavian journal of gastroenterology.

[16]  Mark C. Phillips,et al.  Hyperspectral microscopy of explosives particles using an external cavity quantum cascade laser , 2012 .

[17]  M. Diem,et al.  A decade of vibrational micro-spectroscopy of human cells and tissue (1994-2004). , 2004, The Analyst.

[18]  M. Phillips,et al.  Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array. , 2008, Optics express.

[19]  J. Popp,et al.  Vibrational Spectroscopic Imaging of Soft Tissue , 2014 .

[20]  Yves-Laurent Mathis,et al.  Practical tests of a focal plane array detector microscope at the ANKA-IR beamline , 2006 .

[21]  Carol J. Hirschmugl,et al.  Multi-beam synchrotron infrared chemical imaging with high spatial resolution: Beamline realization and first reports on image restoration , 2011 .

[22]  B. Beccard,et al.  Imaging capabilities of synchrotron infrared microspectroscopy. , 2004, Faraday discussions.

[23]  Federico Capasso,et al.  High-performance midinfrared quantum cascade lasers , 2010 .

[24]  Christian Vieider,et al.  MEMS-based uncooled infrared bolometer arrays: a review , 2007, SPIE/COS Photonics Asia.